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Abstract— Probabilistic set invariance is a concept that mea-
sures at which probability the given set is invariant under a
stochastic process. While this concept successfully measures
the level of invariance of a given set, its major limitations
include excessive conservativeness and lack of consideration of
the prior distribution of the state. In this paper, we introduce
a modified notion of probabilistic set invariance that takes into
account the starting distribution of the stochastic process. The
probability of never escaping the given set, i.e., the survival
rate, is defined as a function of the initial distribution and the
length of the time window, and its infinitesimal-time behavior is
analyzed. For Itô diffusion processes, we find that the decaying
rate of survival rate, which we call the leakage rate, can be
analytically evaluated through a surface integral formula on
the boundary of the set given the probability distribution of
state and the update rule. We validate the formula through a
numerical example, in which the simulation result well matches
the analytical prediction.

I. INTRODUCTION

Set invariance is an important topic in control systems
engineering that directly relates to ensuring safety of a
system [1]. Including the classic Lyapunov methods [2],
[3], invariance-based frameworks such as control barrier
functions [4], [5] and Hamilton-Jacobi reachability analysis
[6] have proven to work well in deterministic settings where
the nominal model and the upper bound of the modeling
error are all known. Such methods are recently being applied
to more complex tasks, for example, collision avoidance for
robots [7], [8].

However, many real-world systems are subject to distur-
bance whose magnitude is unbounded, for example, Gaussian
noise models. In the typical case where actuation limits are
present, completely (with probability 1) preventing violation
of the safety constraints is in general not possible, and
invariance can only be guaranteed in a probabilistic manner.
The concept of probabilistic invariant sets was introduced
for this purpose: A subset C of the state space is said to be
ϵ-probabilistic invariant (ϵ ∈ [0, 1) is the escape probability)
if the probability of a trajectory residing in C during the
given time window T is at least 1− ϵ for any deterministic
initial state in C, where T may be given infinite [9].

Various prior works studied probabilistic invariance. The
works [9]–[12] proposed ways to evaluate ϵ given C or
vice versa for discrete-time systems. For the continuous-
time case, especially Itô diffusion processes, barrier-function-
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based approaches are recently gaining interest to construct
probabilistic invariant sets [13]–[17].

The most significant drawback of the existing probabilistic
invariance framework, however, is that it tends to be very
conservative, because only the worst among all escaping
probabilities from C is used as the invariance measure. The
chance of escaping C naturally appears to be the largest
for initial conditions on the set boundary, but the actual
probability of the starting state being on the boundary, which
is in most cases infinitesimal, is not taken into account.
Moreover, the time horizon T should be specified before
execution, which is another limitation.

In this paper, as a first step towards overcoming
these shortcomings and building an initial-distribution-aware
feedback strategy preserving probabilistic invariance for
continuous-time stochastic systems, we instead evaluate the
escape probability over the given distribution of starting
state, not for every deterministic initial condition in C. We
consider chance of survival as a function of time, i.e., the
probability of the trajectory never escaping C before the
given timepoint. While it is obvious that this survival rate
gradually decays as time flows, it is very natural to claim
that its rate of decay measures the level of invariance of C
at a specific time. The notion of leakage rate from the set C
is introduced, which directly relates to the decaying speed of
the survival rate and measures how invariant the set C is. We
derive a formula to calculate the leakage rate Itô diffusion
processes, and the formula is validated using a numerical
simulation.

The advantages of the proposed framework compared to
probabilistic invariant sets are: it takes into account the actual
starting distribution and therefore is not conservative when
estimating the survival rate; and there is no need to specify
prediction length T , as we consider infinitesimal time win-
dow. We expect that the concept of leakage rate can be useful
in practical applications where accurate evaluation of the
safety risk is important, for example, aerial vehicle motion
planning and control [18], [19] or autonomous driving [20]–
[22].

Notation

For brevity of the derivation, we define ϕ : R∪{±∞} →
R≥0 and Φ : R ∪ {±∞} → [0, 1] as the probability density
and the cumulative distribution functions of the unit normal
distribution:

ϕ(x) =
1√
2π

e−
1
2x

2

, Φ(x) =

∫ x

−∞

1√
2π

e−
1
2u

2

du (1)



for finite x, and the function values are defined commonsen-
sically for infinite x. To handle convergence of the limits,
we use the big-O and small-o notations. For real-valued
functions fL(t), fR(t) and g(t),

fL(t) = fR(t) +O(g(t)) (2)

if |fL(t) − fR(t)| ≤ c|g(t)|, ∀t ∈ (0, T ] for some positive
constants c and T . We write

fL(t) = fR(t) + o(g(t)) (3)

if the same holds for any positive constant c.

II. LEAKAGE RATE: DEFINITION

In this paper, we consider a continuous-time stochastic
process {Xt}t∈R≥0

on state space X indexed by time t ∈
R≥0 with Markov property. Let C be a measurable subset of
X whose leakage rate we want to measure, i.e., how invariant
the set C is. For a given timepoint t, a trajectory is considered
lost invariance if it has at least once visited outside of C
within [0, t]. To that end, we make use of the concept of
killed process.

Definition 1 (Killed Process). Consider a stochastic process
Yt on X ∪ {K} defined for t ∈ R≥0, where K /∈ X is the
coffin state. Let E(Yt, t) be the (possibly random) event on
which the process is killed. The process Yt is a killed process
if Yτ = K for all τ ≥ t given E(Yt, t) for some t ∈ R≥0.

Define Yt as the following stochastic process on X∪{K}:

Yt =

{
Xt if Xτ ∈ C ∀τ ∈ [0, t],

K else.
(4)

Then, Yt is a killed process with the Markov property.
Whenever Xt escapes the set C, Yt is immediately removed
from X and permanently stored at the coffin state K.

The probability distribution of Yt can be described using
two functions, p : C × R≥0 → R≥0 and Γ : R≥0 → R≥0:

P[Yt ∈ S] =

∫
S

p(x, t)dx (5)

for any measurable subset S of C, and

Γ(t) = P[Yt ̸= K] =

∫
C

p(x, t)dx, (6)

where the integral can be the summation for discrete spaces.
We call Γ(t) the survival rate hereafter. We denote the
conditional distribution of Yt given Yt ̸= K using q(x, t).
It can be easily found that q(x, t) = p(x, t)/Γ(t).

The probability of Yt being alive, i.e., the survival rate
Γ(t) := P[Yt ̸= K], measures how invariant the set C is and
plays a similar role with the measure 1− ϵ for probabilistic
invariant sets. Indeed, the behavior of Γ(t) depends on the
initial distribution X0, and it decays towards zero as t → ∞.
In this paper, we are mainly interested in how Γ(t) behaves
as time flows, especially its time derivative Γ̇(t).

Definition 2 (Leakage Rate). The leakage rate of Xt from
set C is defined as the limit

γ(t) := lim
s↘0

P [Yt+s = K|Yt ̸= K]

s
. (7)

The numerator is the conditional probability of Xt escaping
the set C at least once during the interval [t, t+s], given Xt

has never escaped C before.

It should be noted that the limit might diverge depending
on the distribution Yt. Later in this paper, we will also
deduce a sufficient condition for its convergence. Under the
assumption that γ(t) has a finite value, it is straightforward
to find that γ(t) ≥ 0, and Γ(t) has a right derivative

Γ̇(t) = −Γ(t)γ(t). (8)

III. COMPUTATION OF LEAKAGE RATE

A. Motivating Example: Discrete State Space

Before examining the continuous state space case (which
is the main contribution of this paper), as a motivating
example, we first look into the case where the state space
has N (< ∞) elements. Here, the state space takes the form
X = {xi : i ∈ {1, · · · , N}}, where xi = xj if and only if
i = j. The distribution Xt can be written using functions
pi(t) = P[Xt = xi], and the transition rate from xi to xj

(i ̸= j) is defined as

Qij = lim
s↘0

P
[
Xt+s = xj

∣∣Xt = xi

]
s

. (9)

Then, the dynamics of the distribution over X is written as
follows:

ṗi(t) = −
∑
j ̸=i

Qijpi(t) +
∑
j ̸=i

Qjipj(t). (10)

Let C = {xi : i ∈ IC} where IC is a subset of {1, · · · , N}.
It can be found that

γ(t) =

∑
i∈IC ,j /∈IC

Qijpi(t)∑
i∈IC

pi(t)
(11)

if Γ(t) > 0, γ(t) = 0 if Γ(t) = 0. Note that when evaluating
γ(t), the probability of “temporarily visiting outside and
then returning back” within the infinitesimal interval should
also be taken into account. However, we omit the detailed
explanation here, since it is not directly related to the main
content of this paper.

B. Computation of Leakage Rate for Itô Diffusion Processes

We will now consider the same problem on an Itô diffusion
process on a continuous Euclidean state space X = Rn. We
point out that, although we simply assumed Euclidean state
space here for notational brevity, the concept can be easily
applied mutatis mutandis to finite-dimensional Riemannian
manifolds.

Firstly, we assume the set of interest C is a closed subset
of Rn that can be described by

C = {x : h(x) ≥ 0}, (12)



where h : Rn → R is a C2 function that satisfies the
following regularity conditions:

Int C = {x : h(x) > 0}
∂C = {x : h(x) = 0}

∂xh(x) ̸= 0, ∀x ∈ ∂C,

(13)

where Int C and ∂C are the interior and boundary of C,
respectively. We assume Xt is an Itô diffusion process which
satisfies the following stochastic differential equation (SDE)

dXt = µ(Xt)dt+ σ(Xt)dWt, (14)

where Wt is the nw-dimensional Wiener process. The drift
and diffusion terms µ : Rn → Rn and σ : Rn → Rn×nw are
assumed to be Lipschitz continuous functions. Define Yt as
(4) so that whenever Xt reaches the boundary of C for the
first time, Yt is removed from C and permanently stored at
the coffin state K.

Theorem 1 (Leakage Rate for Itô Diffusion Processes).
The leakage rate γ(t) has a finite value if there exists a
continuous function mt : C → R≥0 such that q(x, t) =
mt(x)h(x) everywhere on C, and

γ(t) =

∫
∂C

mt(x)
∥∥∂xh(x) · σ(x)∥∥2
2
∥∥∂xh(x)∥∥ dS, (15)

where
∫
∂C

(· · · )dS is the surface integral over the boundary
of C.

Proof. Since the dynamics (14) is time invariant, without
loss of generality, we can let t = 0 and Γ(0) = 1, so that
p(x, 0) = q(x, 0) describes the initial probability distribution
X0. Then, the leakage rate at t = 0 can be written as

γ(0) = lim
t↘0

P
[
minτ∈[0,t] h(Xτ ) < 0

]
t

. (16)

Below, we use m(x) and p(x) as the shorthand notations for
m0(x) and q(x, 0) = p(x, 0). The probabilities P[·] with no
condition specified are measured with respect to the initial
distribution X0.

We start from the following lemma. See the appendix for
its proof.

Lemma 1. Let Xt be the stochastic process driven by (14).
For any deterministic starting state X0 = x such that h(x) ≥
0,

P

[
min

τ∈[0,t]
h(Xτ ) < 0

∣∣∣∣∣X0 = x

]
= 2Φ(b(t, x)) + o(t) (17)

where b(t, x) = − h(x)

∥∂xh(x)·σ(x)∥√t
∈ {−∞} ∪ R≤0.

The probability of reaching the set boundary ∂C within
time interval [0, t] can be evaluated using the following

integral.

P

[
min

τ∈[0,t]
h(Xτ ) < 0

]

=

∫
C

p(x) · P

[
min

τ∈[0,t]
h(Xτ ) < 0

∣∣∣∣∣X0 = x

]
dx

=

∫
C

p(x) · 2Φ(b(t, x))dx+ o(t)

(18)

Let C[a,b] = {x : a ≤ h(x) ≤ b}, C(a,b) = {x : a < h(x) <
b} and ∂Ca = {x : h(x) = a} for a, b ≥ 0. According
to the regularity condition ∂xh(X) ̸= 0 ∀x ∈ ∂C and the
assumption that h is C2, there exists a positive real number
ϵ such that

∂xh(x) ̸= 0, ∀x ∈ C[0,ϵ]. (19)

Let δ = min{ϵ, t1/4} and split the integral in (18) into two
parts as follows:

∫
C

p(x) · 2Φ(b(t, x))dx =

∫
C[0,δ]

(·)dx︸ ︷︷ ︸
(A)

+

∫
C(δ,∞)

(·)dx︸ ︷︷ ︸
(B)

.

(20)
To evaluate (A), we use the fact that

∫
C[0,y]

β(x, h(x))dx =

∫ y

0

∫
∂Cz

β(x, z)∥∥∂xh(x)∥∥dSdz (21)

for any continuous function β : C × R → R if ∂xh(x) ̸= 0
for all x ∈ C[0,y], which holds for y = δ. Let

β(x, z) = m(x)z · 2Φ

(
− z∥∥∂xh(x) · σ(x)∥∥√t

)
(22)

and apply the coordinate transform ζ
√
t = z. Then, (A)

becomes

(A)

t

=

∫ δ′

0

∫
∂Cζ

√
t

2m(x)∥∥∂xh(x)∥∥ζΦ
(
− ζ∥∥∂xh(x) · σ(x)∥∥

)
dSdζ,

(23)
where δ′ = δ/

√
t. Notice that the integral

∫
∂Cb

2m(x)∥∥∂xh(x)∥∥ζΦ
(
− ζ∥∥∂xh(x) · σ(x)∥∥

)
dS (24)

as a function of b ∈ R≥0 is right continuous at b = 0. Taking
the limit t ↘ 0, we have δ′ → ∞ and ζ

√
t → 0, and thus



the integral becomes

lim
t↘0

(A)

t

=

∫ ∞

0

∫
∂C

2m(x)∥∥∂xh(x)∥∥ζΦ
(
− ζ∥∥∂xh(x) · σ(x)∥∥

)
dSdζ

=

∫
∂C

∫ ∞

0

2m(x)∥∥∂xh(x)∥∥ζΦ
(
− ζ∥∥∂xh(x) · σ(x)∥∥

)
dζdS

=

∫
∂C

2m(x)
∥∥∂xh(x) · σ(x)∥∥2∥∥∂xh(x)∥∥

∫ ∞

0

ξΦ(−ξ)dξdS

=

∫
∂C

m(x)
∥∥∂xh(x) · σ(x)∥∥2
2
∥∥∂xh(x)∥∥ dS.

(25)
To obtain the first equality, the continuity property of (24)
was used, after which the two variables x and ζ are decou-
pled and the order of integration can be swapped without
further modification (the second equality). The coordinate
transform ξ ·

∥∥∂xh(x) · σ(x)∥∥ = ζ was used to arrive at
the third equality, and finally the (inner) improper integral∫∞
0

ξΦ(−ξ)dξ = 1/4 was evaluated.
For all x ∈ C(δ,∞), h(x) > t1/4. Since Φ is a strictly

increasing function, for all x ∈ C(δ,∞),

Φ(b(t, x)) < Φ

(
− t1/4∥∥∂xh(x) · σ(x)∥∥√t

)

= Φ

(
− 1∥∥∂xh(x) · σ(x)∥∥ t1/4

) (26)

and therefore

lim
t↘0

Φ(b(t, x))

t
= lim

v→∞
v4Φ(b(v−4, x))

≤ lim
v→∞

v4Φ

(
− v∥∥∂xh(x) · σ(x)∥∥

)
= 0,

(27)

where we substituted v−4 = t here. Therefore, we have

lim
t↘0

(B)

t
= 0. (28)

Back to the definition of γ, observe

γ(0) = lim
t↘0

1

t

∫
C

p(x) · P
[
h(Xt) < 0

∣∣X0 = x
]
dx

= lim
t↘0

(A) + (B) + o(t)

t
= lim

t↘0

(A)

t
+ lim

t↘0

(B)

t

(29)

and the proof is complete.

If p(x, t) ̸= 0 on ∂C, γ(t) does not have a finite value
and therefore Γ(t) experiences a sudden drop in its value. In
this case,

η(t) := lim
s↘0

P [Yt+s = K|Yt ̸= K]√
s

(30)

can alternatively measure how fast Γ(t) drops. Following
the similar procedure as Theorem 1, we obtain the following
corollary.

Corollary 1. Suppose there exists a positive constant ϵ such
that p(x, t) is continuous on C[0,ϵ]. Then,

η(t) =

∫
∂C

√
2

π

p(x, t)
∥∥∂xh(x) · σ(x)∥∥2∥∥∂xh(x)∥∥ dS. (31)

Proof. In the proof of Theorem 1, instead of (22), let

β(x, z) = p(x)Φ

(
− z∥∥∂xh(x) · σ(x)∥∥√t

)
. (32)

C. Implications and Remarks

Intuitively, γ(t) should be invariant under the choice of h
to represent the set C. For example, let h1(x) = n(x)h(x)
for some function n : C → R and assume that there exists
ϵ > 0 such that n(x) ≥ ϵ for all x ∈ C. The new h1 gives
the same C as before and satisfies the regularity conditions
abovementioned. Now, observe that

∂xh1(x) = n(x)∂xh(x) + h(x)∂xn(x)

= n(x)∂xh(x), ∀x ∈ ∂C
(33)

since h(x) = 0 everywhere on ∂C, and let q(x, t) =
m1,t(x)h1(x) so that m1,t(x) = mt(x)/n(x). Then, the new
leakage rate γ1(t) obtained using h1 evaluates to

γ1(t) =

∫
∂C

m1,t(x)
∥∥∂xh1(x) · σ(x)

∥∥2
2
∥∥∂xh1(x)

∥∥ dS

=

∫
∂C

mt(x)
n(x) · n(x)2

∥∥∂xh(x) · σ(x)∥∥2
2n(x) ·

∥∥∂xh(x)∥∥ dS

= γ(t),

(34)

which matches our intuition.
It is interesting that γ(t) does not explicitly depend on

the drift term µ. This is because within an infinitesimal time
window, the influence of the diffusion term dominates that
of the drift term. Informally speaking, among the two terms
contributing to the state displacement

Xt −X0 =

∫ t

0

µ(Xτ )dτ +

∫ t

0

σ(Xτ )dWτ , (35)

the magnitude of the drift-related term depends lin-
early with respect to the size of the time window (i.e.,
E
∥∥∥∫ t

0
µ(Xτ )dτ

∥∥∥ = O(t)), while the diffusion-related term

is proportional to the square root (i.e., E
∥∥∥∫ t

0
σ(Xτ )dWτ

∥∥∥ =

O(
√
t)), as t ↘ 0.

This implies that, in feedback synthesis problems where
µ depends on the user-given input but σ cannot be directly
modulated, probabilistic safety guarantee should be achieved
by regulating mt(x) on the set boundary, where mt(x)
indicates the steepness of q is on ∂C. As seen in the integrand
mt(x)

∥∥∂xh(x) · σ(x)∥∥2/2∥∥∂xh(x)∥∥, mt(x) should be kept
small where σ(x) is larger (and mt(x) can be bigger where
σ(x) is small) for the same level of safety. Smaller mt(x)
values imply that the drift term µ pushes the system more
aggressively into C, and this well matches the common sense



that the control should be more aggressive (smaller mt)
under larger uncertainty (big σ).

It is very natural to expect that the mt can be regulated
using the recent barrier-function-based approaches. Aligned
with the recent work on stochastic extensions of control
barrier functions [4], [13]–[15], we conjecture that a function
α : R× Rn×nw → R can be found so that

Ah(x) + α(h(x), σ(x)) ≥ 0 (36)

ensures m(x) ≤ M , ∀x ∈ ∂C where M ∈ R≥0 is a preset
upper bound on m(x).1 Checking whether this holds is left
as a future work.

IV. LONG-TERM BEHAVIOR

In this section, we examine the long-term (time window
being not infinitesimal) behavior of Yt conditioned on Yt ̸=
K, i.e., q(x, t). We also discuss the asymptotic behavior of
q(x, t).

Since Yt does not jump to or from the coffin state K given
Yt ∈ Int C, it follows the same SDE (14) as Xt within Int C,
and p(x, t) therefore satisfies the Fokker-Planck equation:

∂tp(x, t)

= −
n∑

i=1

∂i(µi(x)p(x, t)) +

n∑
i=1

n∑
j=1

∂i∂j(Dij(x)p(x, t))︸ ︷︷ ︸
(RHS)

.

(37)
where the operator ∂i denotes the partial derivative with
respect to the i-th component of x, µi is the i-th component
of µ(x), and Dij(x) is the ij-th element of the n×n matrix
1
2σ(x)σ(x)

⊤. Suppose that γ(t) is continuous and has a finite
value for every t ∈ R≥0. Since q(x, t) = p(x, t)/Γ(t) and
Γ̇(t) = −γ(t)Γ(t), we have

∂tq(x, t) = ∂t

(
p(x, t)

Γ(t)

)
=

∂tp(x, t)

Γ(t)
− Γ̇(t)p(x, t)

Γ(t)2

=
(RHS)

Γ(t)
+ γ(t)q(x, t)

(38)

and thus

∂tq(x, t)− γ(t)q(x, t)

= −
n∑

i=1

∂i(µi(x)q(x, t)) +

n∑
i=1

n∑
j=1

∂i∂j(Dij(x)q(x, t)),

(39)
which is the Fokker-Planck equation with a decay-
compensation term −γ(t)q(x, t).

Further, we examine the case where the distribution of
Yt conditioned by Yt ̸= K is kept time invariant, i.e.,
∂tq(x, t) = 0. We denote this steady-state solution by q(x).

1Here,

Ah(x) := lim
t↘0

E[h(Xt)|X0 = x]− h(x)

t

is the infinitesimal generator of h.

It is obvious that γ(t) is also kept constant in this steady-state
case, so let γ(t) = γ. Then, q(x) should satisfy

− γq(x)

= −
n∑

i=1

∂i(µi(x)q(x)) +

n∑
i=1

n∑
j=1

∂i∂j(Dij(x)q(x)),
(40)

and since γ is finite, q(x) is subject to the boundary condition

q(x) = 0, ∀x ∈ ∂C. (41)

Note that γ depends on the density q(x), and thus this
boundary value problem is not linear. The following are open
topics requiring further research:

• existence and uniqueness of solution to the time-varying
and steady-state partial differential equations (PDEs),

• convergence of q(x, t) to q(x),
• development of an algorithm that efficiently solves the

PDEs.

V. NUMERICAL EXAMPLE

In this section, we look into a simple numerical example
to validate the main result. Let Xt be a stochastic process in
R driven by

dXt = −Xtdt+ dWt. (42)

Let C = {x ∈ R : h(x) = 1 − x2 ≥ 0}. The steady-
state Fokker-Planck equation (40) then yields the following
boundary value problem form:

(1 + γ)q(x) + xq′(x) +
1

2
q′′(x) = 0

q(−1) = q(1) = 0,
(43)

where (·)′ denotes the derivative with respect to x. To
evaluate γ, let m(x) = lims→x q(x)/h(x) to get m(−1) =
q′(−1)/2 and m(1) = −q′(1)/2. With that, γ evaluates to

γ =
m(−1) · 22

2 · 2
+

m(1) · 22

2 · 2
=

q′(−1)− q′(1)

2
. (44)

Since the state space is one-dimensional and the surface
integral turns into the sum of the integrand values at the
two boundary points of C.

Remark 1. In this special case, there is another way to
obtain (44) using the property

∫ 1

−1
q(x)dx = 1 and the

boundary condition q(±1) = 0:

1 =

∫ 1

−1

q(x)dx

= 1 · q(1)− (−1) · q(−1)−
∫ 1

−1

xq′(x)dx

=

∫ 1

−1

(
(1 + γ)q(x) +

1

2
q′′(x)

)
dx

= 1 + γ +
q′(1)− q′(−1)

2
.

(45)

Using the shooting method and MATLAB’s ode45 solver,
we found a numerical solution with γ = 1.596 that satisfies
the differential equation and the boundary conditions, as
shown in Fig. 1. Initial conditions are sampled from this



Fig. 1. The plot of the steady-state survival-conditioned distribution q(x)
and its cumulative counterpart Ψ(x) =

∫ x
−1 q(u)du, obtained by solving

the boundary value problem (43) using the shooting method.

Fig. 2. The survival rate Γ(t). Each gray line depicts the number of
surviving trials divided by the number of total trials for a batch, the red
line is the predicted survival rate Γ(t) = e−γt. The numerical result well
matches the analytical prediction.

distribution.2 Simulation was done on the interval t ∈ [0, 3]
using the Euler-Maruyama method with step size ∆t =
10−4. The simulation comprises 20 batches in total, where
each batch consists of 300 trials. Fig. 2 shows the survival
rate Γ(t). As seen in the plot, the prediction Γ(t) = e−γt

well matches the measured. Fig. 3 showcases that, as pre-
dicted using (43), the distribution of the surviving states stays
stationary, although the uncertainty in measurement escalates
as time flows due to the decrement in the number of surviving
samples.

VI. CONCLUSION

In this work, we defined the concept of leakage rate and
proposed a surface integral that evaluates the value of leakage
rate for Itô diffusion processes. The surface integral depends
on the gradient of the probability density function of the
survival-conditioned distribution of state, and the magnitude
of the diffusion term on the boundary of the set. A numerical
simulation for a simple SDE-driven process was conducted

2Write the cumulative distribution function as Ψ(x) =
∫ x
−1 q(u)du and

let U be a uniformly-distributed random variable on the interval [0, 1]. The
random variable Ψ−1(U) follows the distribution X0.

Fig. 3. The conditional cumulative distribution captured during the
simulation. Each gray line denotes the cumulative histogram for a batch,
i.e., the number of surviving trials having values less than x divided by the
number of total surviving trials at time t. The red curves denote the predicted
value Ψ(x) =

∫ x
−1 q(u)du. The measured distribution well matches the

prediction, although the variance increases as the number of surviving
samples decay with respect to time.

to validate the formula. From the result, it can be seen
that the calculated analytical leakage rate well describes the
numerical result. As discussed briefly in section III-C, while
we only considered autonomous systems in this paper, for
future work, we plan to develop a feedback strategy for a
given set C to bound the leakage rate from above.

APPENDIX: PROOF OF LEMMA 1

Proof. Define two stochastic processes as follows:

W ′
t =

∂xh(x) · σ(x)∥∥∂xh(x) · σ(x)∥∥Wt,

Ht = h(x) + ∂xh(x) · σ(x) ·Wt

= h(x) +
∥∥∂xh(x) · σ(x)∥∥ ·W ′

t .

(46)

Then, W ′
t is a standard one-dimensional Brownian motion

and therefore the following holds [23, Theorem 3.7.1]:

P

[
min

τ∈[0,t]
W ′

τ < −α

]
= 2Φ

(
− α√

t

)
, ∀α, t ≥ 0 (47)

and

P

[
min

τ∈[0,t]
Hτ < at1/4

]
= 2Φ

(
− h(x)− at1/4∥∥∂xh(x) · σ(x)∥∥√t

)
(48)

for any a ∈ R, given sufficiently small t. Making use of the
strictly increasing and convex property of the functions ϕ



and Φ for negative values with large enough magnitude, one
can obtain∣∣∣∣∣∣P

[
min

τ∈[0,t]
Hτ < at1/4

]
− 2Φ

(
− h′
√
t

)∣∣∣∣∣∣
≤ 4

|a′|
t1/4

·

∣∣∣∣∣ϕ
(
− h′
√
t
+

|a′|
t1/4

)∣∣∣∣∣ = o(tk), ∀k ≥ 0

(49)

for t close to zero, where h′ and a′ are shorthands for
h(x)/

∥∥∂xh(x) · σ(x)∥∥ and a/
∥∥∂xh(x) · σ(x)∥∥, respectively.

A well-established proof of strong convergence of the
Euler-Maruyama method for simulating Itô diffusion pro-
cesses [24] states that

E|Ht − h(Xt)| = O(
√
t). (50)

Applying Markov’s inequality to this, with probability
greater than 1− t1/4,

|h(Xt)−Ht| ≤ ct1/4 (51)

for some constant c > 0.
Combining (49) and (51) completes the proof.
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