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Abstract— This paper introduces a new upper bound
on escape probability of a stochastic system from a
super zero level set of a zeroing-type stochastic con-
trol barrier function (SCBF). For both discrete-time and
continuous-time cases, a time-varying probability bound is
built by constructing a supermartingale and then applying
Ville’s inequality. While existing martingale-based proba-
bility bounds depend only on the expectation of change
of the SCBF value, the proposed bound also takes into
account the growth rate of its variance, resulting in en-
hanced tightness. The construction of the proposed bound
does not require the SCBF value to be bounded, thus it is
more suitable for tasks with large and non-compact safe
sets. The validity and tightness of the proposed bound are
checked using Monte-Carlo simulation experiments.

Index Terms— Stochastic systems, Constrained control,
Nonlinear systems, Markov processes

I. INTRODUCTION

A. Motivation for Stochastic Control Barrier Functions

Safety is undeniably one of the most fundamental concerns
in many control tasks. Formally verifying safety has therefore
long attracted considerable attention from researchers in the
related field. Safety in control systems engineering is usually
defined as the existence of a control law that allows permanent
satisfaction of a set of safety constraints, in other words,
control invariance of the safe set. Although finding a control
invariant set is known to be challenging for general nonlin-
ear systems, many prior works have demonstrated promising
results [1], for example, the Hamilton-Jacobi reachability
analysis framework [2]–[4] which allows computation of the
tightest possible invariant set, and control barrier functions
(CBFs) [5]–[7]. These provide hard guarantees on set invari-
ance given deterministic pre-known bounds on how the system
will behave.

However, many real-world control systems are inherently
stochastic, for example, robot control under disturbing forces
or measurement uncertainty. In such cases, safety can no
longer be checked deterministically nor be considered a binary
(safe or unsafe) concept: Deterministic or almost-sure safety
guarantee would typically require impractical assumptions, for
example, unbounded input [8]. Instead, we are interested in
estimating at which probability the system will escape a set
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within the prescribed time interval given the initial condition,
i.e., the escape probability [9]–[12].

Regulating the escape probability and achieving best per-
formance are the two most major but possibly conflicting
goals of control synthesis for a stochastic system. A controller
prioritizing performance over safety is likely to be aggressive
and may put the system at a risk, and the safest possible
controller would be the one that does nothing other than
pushing the system to the safest spot. Stochastic CBF (SCBF)
is a variant of CBF built upon this motivation [8], which
is capable of generating input constraints that well balance
between the two extremes, yielding a well-performing (yet
not too conservative) control strategy.

In this paper, we use the notion survival rate and escape
probability interchangeably for the sake of notational brevity.
The survival rate Γ(t) denotes at which probability the system
will stay within the safe set throughout the time window [0, t]
and the escape probability is equal to 1 − Γ(t). Intuitively,
Γ(t) should be a monotonically decaying function and should
depend on the initial state distribution and the dynamics.

B. Martingale-Based Escape Probability Bounds

While it is empirically obvious that a valid SCBF does
regulate the escape probability, its actual upper bound does not
generally relate to the SCBF parameters in a straightforward
manner. Therefore, considerable research effort was recently
devoted to derive a sufficiently tight bound of escape proba-
bility given a valid SCBF. A common procedure used in many
works is to make use of one of the martingale inequalities, for
example, Ville’s inequality [13].

Definition 1 (Martingale). Let Yt ∈ R be a stochastic process
indexed by time t ≥ 0, where t can be either discrete
or continuous. Let Y[0,s] be the trajectory information of
Y throughout the interval [0, s]. Then, Yt is a martingale
if E[Yt|Y[0,s]] = Ys, supermartingale if E[Yt|Y[0,s]] ≤ Ys,
submartingale if E[Yt|Y[0,s]] ≥ Ys, for all s ≤ t.

Theorem 1 (Ville’s Inequality [13]). Let Yt ∈ R be a
nonnegative supermartingale. Then for any λ > 0,

P
[
sup

0≤s≤t
Ys > λ

]
≤ EY0

λ
. (1)

For discrete-time systems, works such as [11] suggested an
exponentially decaying lower bound for the survival rate in
the form Γ(t) ≥ Γ0γ

t for appropriate constants Γ0 and γ. For
continuous-time systems, linear bounds Γ(t) ≥ Γ0−γt [14] or
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exponentially decaying bounds Γ(t) ≥ Γ0e
−γt [10], [15] were

derived. The methods mentioned here all require the SCBF
value to be bounded in the safe set. This might pose hurdles
in SCBF synthesis and introduce additional conservativeness
especially if the safe set is not compact, for example, collision
avoidance task for mobile robots.

As its appearance suggests, Ville’s inequality is a result of
Markov’s inequality1 and it depends only on the expectation
of Y0 and not on any additional information on how Yt is
distributed around the expectation, for example, its variance. In
other words, the inequality holds for Yt with arbitrary variance.
This is a big strength, because the derived probability bound
does not depend on the characteristics of the uncertainty (or
noise) and therefore generalizes to a wider class of systems.
On the other hand, this also is the main cause of the often
overconservativeness in the abovementioned works, especially
with small variances.

The authors of [16] precisely pointed out this issue and
suggested a comparison-lemma-like theorem that gives a sig-
nificantly tighter bound. However, evaluation of this bound
requires Monte-Carlo simulation of a stochastic process, and
the method only applies to continuous-time Itô diffusion
processes with deterministic initial condition.

C. Summary of Contributions of the Paper

In this paper, we derive new escape probability bounds
for both discrete-time and continuous-time SCBFs based
on Ville’s inequality. While not losing the abovementioned
strength of martingale-based methods, the proposed bounds
improve existing works in the following three perspectives.

• The proposed probability bound explicitly depends on
the magnitude of uncertainty of the dynamics. In the
extreme case where the system becomes deterministic,
the proposed method yields Γ(t) = 1.

• The bound takes into account the non-deterministic initial
condition. The probability depends on the mean and
variance of the initial SCBF value.

• Empirically, the proposed bound exhibits less conserva-
tiveness compared to existing works.

The first two advantages come from the squaring technique
we used in deriving the probability bound. This is similar to
the idea to derive Chebyshev’s inequality2 from Markov’s in-
equality. This squaring technique lets the variance information
directly appear in the supermartingale conditions, making the
probability bound explicitly depend on the variance. Since the
bounds depend on the variance, we accordingly introduce a
modification to the definition of SCBFs, in which not only
their expectation but also the variance of drift of SCBF values
is bounded. To verify the last item, we compare our discrete-
time bound with [11] and the continuous-time probability
bound with [10], [14]. We also present how the proposed
bound compare with Monte-Carlo simulation results.

1For a nonnegative random variable X with finite expectation, P[X ≥
λ] ≤ EX/λ for all λ > 0.

2For a random variable X ∈ R with finite expectation µ and variance
σ2 > 0, P[|X − µ| ≥ kσ] ≤ 1/k2 for any k > 1. The proof starts by
applying Markov’s inequality to the nonnegative random variable |X − µ|2.

II. DISCRETE-TIME SCBF

A. Definition
Consider the discrete-time stochastic dynamics model

Xt+1 ∼ F (Xt, ut) (2)

where Xt ∈ X and ut ∈ U are the state and input at
time t ∈ {0, 1, · · · }, respectively. The map F describes the
probability distribution of the next state Xt+1 given the current
state and input pair (Xt, ut). Discrete-time SCBF (DTSCBF)
is a concept inspired by discrete-time CBFs [17]. We use the
following definition in this paper.

Definition 2 (Discrete-Time SCBF). Let a ∈ (0, 1) and b ≥ 0
be constants. A continuous function h : X → R is an (a, b)-
DTSCBF if, for every x ∈ C = {x : h(x) ≥ 0}, there exists
an input u such that

EX∼F (x,u)[h(X)] ≥ ah(x) + b, (3)
VarX∼F (x,u)[h(X)] ≤ 1 (4)

For every x ∈ Rn, denote the set of control inputs that
satisfies (3) and (4) by Udtscbf(x), i.e.,

Udtscbf(x) :=

{
u ∈ U :

EX∼F (x,u)[h(X)] ≥ ah(x) + b,

VarX∼F (x,u)[h(X)] ≤ 1

}
(5)

The parameters a, b determine how aggressively in average the
DTSCBF will push the state into the set C near its boundary
∂C: One can easily expect that the escape probability increases
with smaller a or b values. On the other hand, the variance
condition (4), which is original in this paper, measures how
unpredictably the h value will change. The introduction of this
requirement can be regarded natural since this unpredictability
obviously directly affects the escape probability. The upper
bound 1 is not a restrictive constraint: Whenever the upper
bound of the variance does not match 1, we can always re-
scale h by a positive real number to meet the unit upper bound.

B. Exit Probability Upper Bound
Now, given the definition, we will derive a lower bound of

the survival rate

Γ(t) := PX0

[
min
0≤s≤t

h(Xs) ≥ 0

]
(6)

using Ville’s inequality given the initial state distribution X0.
We begin with the following lemma.

Lemma 1 (Comparison in Exit Probability, Discrete-Time).
Let h be a (a, b)-DTSCBF. For a set of parameters β ≤ b,
and δ ≥ 0, define a discrete-time random process Lt as

L0 = h(X0)− δ,

Lt+1 =

{
aLt + β + h(Xt+1)− Eh(Xt+1) if h(Xt) ≥ 0,

aLt + β else
(7)

and assume ut ∈ Udtscbf(Xt) for all t. Then,

P
[
min
0≤s≤t

h(Xs) < 0

]
≤ P

[
min
0≤s≤t

Ls < 0

]
. (8)
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Proof. We will show that if min0≤s≤t h(Xs) ≥ 0 (i.e., the
first case of the update rule in (7) applies), then

Ls ≥ h(Xs) ∀s ∈ [0, t], (9)

from which (8) directly follows. Define a random process ∆s

(0 ≤ s ≤ t) as

∆s :=
h(Xs)− Ls

as
, (10)

so that ∆s ≥ 0 if and only if h(Xs) ≥ Ls. Firstly, ∆0 = δ ≥
0. And the increment of ∆ at time s ∈ [0, t) is

∆s+1 −∆s =
h(Xs+1)− Ls+1 − ah(Xs) + aLs

as+1

=
Eh(Xs+1)− aLs − β

as+1

≥ ah(Xs) + b− aLs − β

as+1

=
a∆s + (b− β)

as+1

(11)

which is nonnegative given ∆s ≥ 0. Applying mathematical
induction on s ∈ [0, t) completes the proof.

Now, Ville’s inequality gives the following theorem.

Theorem 2 (Survival Rate Lower Bound, Discrete-Time). If
h : X → R is an (a, b)-DTSCBF and ut is picked from the set
Udtscbf(Xt), then

P [h(Xs) ≥ 0, ∀s ∈ [0, t]]

≥


(
1− Var(h(X0))

v2

)
γt if Eh(X0) ≥ v(

1− E[(h(X0)−v)2]
v2

)
γt else

(12)

for any pair of v ≥ (1 + b2)/2b, γ ∈ (a2, 1] such that

v ≤ b

1− a
∧ γ = max

{
a, 1− 1

v2

}
(13)

or

v ≥ b

1− a
∧ (ab− va+ vγ)2 − (1− 2vb+ b2)(a2 − γ) = 0.

(14)

Proof. This proof is structured as follows. Firstly, we set up a
supermartingale candidate, with which Ville’s inequality gives
the probability bound (12). Then, we derive the condition so
that the candidate becomes a supermartingale.

For fixed β ∈ [0, b], δ ≥ 0, v ≥ 0, γ ∈ [a2, 1) and time
horizon t, let

Ys =
(Ls − v)2 − v2

γs
+

v2

γt
(15)

be a discrete time stochastic process defined on the time
interval s ∈ [0, t]. Observe that Ys > v2γ−t whenever Ls < 0.
Thus, if Ys is a supermartingale, then combining Lemma 1 and

Ville’s inequality gives

P
[
min
0≤s≤t

h(Xs) < 0

]
≤ P

[
min
0≤s≤t

Ls < 0

]
≤ P

[
max
0≤s≤t

Ys < v2γ−t

]
≤ EY0

v2
γt

= 1−
(
1− E[(h(X0)−v−δ)2]

v2

)
γt.

(16)
Letting δ = max{Eh(X0)− v, 0} results in (12).

Now, let us examine for which choice of β, v and γ (15)
becomes a supermartingale. For that, suppose h(Xs) ≥ 0 and
observe the behavior of the quantity

∆Ys = (Ys+1 − Ys)γ
s+1

= L2
s+1 − γL2

s − 2vLs+1 + 2vγLs

(17)

If E[∆Ys|X[0,s], Ls] ≤ 0 for all Ls ∈ R and s ∈ [0, t], then
Ys surely is a supermartingale. This conditional expectation is

E[∆Ys] = E
[
(aLs + β + h(Xs+1)− Eh(Xs+1))

2
]

− γL2
s − 2v(al + β) + 2vγLs

= (a2 − γ)L2
s + 2(aβ − va+ vγ)Ls

+Var(h(Xs))− 2vβ + β2

(18)

for the case h(Xs) ≥ 0 and

E[∆Ys] = (aLs + β)2 − γL2
s − 2v(al + β) + 2vγLs

= (a2 − γ)L2
s + 2(aβ − va+ vγ)Ls − 2vβ + β2

(19)
otherwise, both being upper bounded by

E[∆Ys] ≤ (a2−γ)L2
s+2(aβ−va+vγ)Ls+1−2vβ+β2. (20)

Here, all the expectations and the variance in (18), (19),
and (20) are conditioned on the previous trajectory X[0,s]

(and therefore Ls also). The key of introducing variance
information here is the construction of (15), which we called
the squaring technique in Section I-C. The bound (20) is
nonpositive for all Ls ∈ R if and only if the three conditions
are met:

a2 − γ ≤ 0, (21)

1− 2vβ + β2 ≤ 0, (22)

(aβ − va+ vγ)2 + (γ − a2)(1− 2vβ + β2) ≤ 0. (23)

That is, any choice of β, v, γ satisfying the above conditions
will make Ys a supermartingale. The first requirement (21)
is satisfied with strict inequality <, which is already an
assumption. For β to satisfy (22) and β ≤ b simultaneously,
it should lie between the bounds

v −
√
v2 − 1 ≤ β ≤ min

{
b, v +

√
v2 − 1

}
, (24)

which has a real solution if v ≥ b2+1
2b . Subject to this, we
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Fig. 1. The plot of γ values as in Theorem 2 (discrete-time version) for many pairs of a and b. The γ values close to 1 denote smaller decay of the
survival probability Γ(t). It can be clearly seen that the behavior follows the intuition that bigger a and b values result in higher chance of survival.

choose β that minimizes the left side of (23).

β = argmin
(24)

(aβ − va+ vγ)2 + (γ − a2)(1− 2vβ + β2)

=


v −

√
v2 − 1 (case A)

v(1− a) (case B)
b (case C)
v +

√
v2 + 1 (case D)

(25)
This QP has four solution candidates.

Case A: It applies when the lower bound β = v−
√
v2 − 1

is the optimal solution. It happens if v(1−a) < v−
√
v2 − 1,

i.e., v < 1/
√
1− a2. Here, γ = a

√
v2 − 1/v is the only

solution for the inequality (23). However, such γ is always
smaller than a2, which contradicts with (21). Thus, case A is
void.

Case B: B applies if the unconstrained solution β = v(1−a)
satisfies (24). This is equivalent to v ≤ b/(1−a). In this case,
(23) can be written

0 ≥ (aβ − va+ vγ)2 + (γ − a2)(1− 2vβ + β2)

= (γ − a)(1− v2 + γv2),
(26)

which leads to (13).
Case C: C applies if b ≤ v +

√
v2 − 1 and v(1 − a) > b.

It is always true that v +
√
v2 − 1 > v(1 − a) given a > 0

and v ≥ 1, so this reduces to the condition v(1− a) > b, i.e.,
v ≥ b/(1− a). Substituting β gives (14).

Case D: Lastly, case D applies if b > v +
√
v2 − 1 and

v(1−a) ≥ v+
√
v2 − 1. Similarly to case A, the only solution

for (23) is γ = −a
√
v2 − 1/v which is negative, contradicting

with (21). Thus, case D is void.

Since (13) is a quadratic equation with respect to γ, we can
find a closed-form expression for the root γ, should one exist,
as a function of v. That is, combining with (14), γ can be
written in a piecewise smooth function of v whose plots for
various (a, b) pairs are shown in Fig. 1. The γ values close to
1 denote slower decay in survival probability. It can be clearly
seen in Fig. 1 that for fixed v, γ is monotonically increasing
with respect to both a and b, which precisely matches the
intuition from Section II-A. It can also be found that γ value
asymptotically approaches 1 with growing v and b. This means
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Fig. 2. Monte Carlo simulation result for the numerical example
system (27). Whenever the indoor temperature hits 25◦C, the simulation
terminates. The simulated survival rate is an estimate of the true value
of Γ(t) given by number of surviving trajectories divided by the number
of total simulations, which is 100 in this example. It can be seen
that Theorem 2 provides a lower bound of Γ(t) that is not overly
conservative. Prob.=Probability.

that Theorem 2 says Γ(t) converges to 1 with sufficiently small
uncertainty, i.e., nearly deterministic systems.

C. Numerical Example
For a numerical example for the discrete-time case, we

consider an air conditioning task which is modeled as follows:

Xt+1 =

[
0.9 + 0.05(1− ut) 0.05

0 0.99

]
Xt+

[
0.25ut + 0.15wt

0.3 + 0.2zt

]
(27)

where the first and second components of Xt ∈ X = R2

respectively denote the indoor and outdoor temperatures in ◦C,
wt and zt are independent and identically distributed (i.i.d.)
one-dimensional unit Gaussians, and ut ∈ [0, 1] is the input
with ut = 0 denoting the air conditioner off, ut = 1 running
at full throttle. The goal of this task is to keep the indoor
temperature below 25◦C, where the initial condition begins at
X0 = [24, x0]

⊤ where x0 is uniformly distributed between 30
and 40. For this task, we use

h(x) = min{100− 4x1, 160− 4x2}, (28)

where x1 and x2 are the first and second components of
x, respectively. One can find that this h is a (0.9, 0.4)-
DTSCBF (see the appendix). Leveraging the convexity of h,
we construct a lower estimate of Eh(Xt+1) as Eh(Xt+1) ≥
h(E[Xt+1]), and the input ut that satisfies h(E[Xt+1]) =
ah(Xt)+b was used in the simulation. Monte Carlo simulation
results using the numerical values are summarized in Fig. 2.
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Fig. 3. Comparison result with [11]. The black curve named simulation
denote the true value of Γ(t) estimated by the Monte Carlo simulation
with 10000 samples. The numbers inside the brackets in the legend
denote the parameter a and b values of the DTSCBF used. The
proposed method (Theorem 2) exhibits less conservativeness compared
to [11].

It can be seen that Theorem 2 provides a decent lower bound
for the survival rate Γ(t).
D. Comparison with Prior Work

We conclude this section by comparing with [11] using the
simple stochastic system

Xt+1 = 0.9Xt + 0.5 + dt (29)

where Xt ∈ X = R is the one-dimensional state, and the
disturbance term dt takes value 1 with probability 1/2 and
−1 with probability 1/2. Suppose that the initial condition is
X0 = 5 with probability 1 and let the DTSCBF candidate
be h(x) = x. It is very straightforward to find that h is
a (0.9, 0.5)-DTSCBF. Since [11] requires h to be bounded
from above, a modified DTSCBF h(x) = min{x,M}, where
M = 10, is also tested. The new h is a (0.875, 0.5)-DTSCBF.
Three survival rate lower bounds, for original and bounded
h-s using Theorem 2 and for bounded h using [11], along
with Monte Carlo estimation of the actual survival rate, is
plotted in Fig. 3. Due to the conservative nature of Markov
inequality variants, both methods exhibit non-negligible con-
servativeness. Nevertheless, it can be clearly seen that the
proposed method gives a significantly tighter bound.

III. CONTINUOUS-TIME SCBF

A. Definition

In this section, using the similar technique as the discrete-
time case, we derive a bound on exit probability using Ville’s
inequality for SCBFs for continuous-time stochastic systems
driven by the Itô stochastic differential equation (SDE) as
follows:

dXt = f(Xt, ut)dt+ σ(Xt, ut)dWt, (30)

where Xt ∈ Rn as a random variable is the state at time
t ≥ 0, ut ∈ U ⊆ Rm is the input, Wt is the mw-dimensional
standard Brownian motion. The continuous function f : Rn×
Rm → Rn describes how in average the system will drift,
and σ : Rn × Rm → Rn×mw is the diffusion term which
measures the magnitude of uncertainty associated with the
system’s evolution.

Before defining continuous-time SCBF, we firstly introduce
the concept of infinitesimal generator, which is the stochastic
analogue of Lie derivative in deterministic systems.

Definition 3 (Infinitesimal Generator). Given the dynamics
(30) and an input u ∈ U , the infinitesimal generator Aζ(x, u)

of a function ζ : Rn → R is defined as follows:

Aζ(x, u) := lim
s↘0

E [ζ(Xt+s)]− ζ(x)

s
, (31)

where the expectation is conditioned on Xt = x and uτ = u
for all τ ∈ [t, t+ s].

Definition 4 (Continuous-Time SCBF). Let a and b be positive
real numbers. A twice continuously differentiable function h :
Rn → R is a (a, b)-CTSCBF if for every x ∈ C := {x :
h(x) ≥ 0}, there exists a feedback u ∈ U such that

Ah(x, u) ≥ −ah(x) + b, (32)
∥∂xh(x)σ(x, u)∥2 ≤ 1. (33)

The infinitesimal generator h(x, u) can be evaluated using
Itô’s lemma as follows:

Ah(x, u) = ∂xh(x)f(x, u)+
1

2
tr
(
σ(x, u)⊤∂xxh(x)σ(x, u)

)
,

(34)
where ∂xh(x) ∈ R1×n and ∂xxh(x) ∈ Rn×n are the gradient
and Hessian of h at x, respectively, and tr is the trace operator.
For every state point x, we write the set of control inputs that
satisfy the CTSCBF constraints as

Uctscbf(x) :=

{
u ∈ U :

Ah(x, u) ≥ −ah(x) + b,

∥∂xh(x)σ(x, u)∥2 ≤ 1

}
. (35)

Unlike the discrete-time case, the drift term σ is usually
not controllable by the input u and is a function of x only.
It is worth mentioning that if σ is a function of x only
and f is linear with respect to the input u (i.e., input affine
system), then the set (35) will be the intersection of U and
an affine halfspace in Rm. This allows one to construct a
QP-based safety filter, namely (S)CBF-QP [18]. On the other
hand, similar to DTSCBF, the diffusion regulation term (33),
which regulates how severely the h value will diffuse, is not
restrictive since h can be rescaled to meet the requirement.
The parameters a and b determine the conservativeness of
CTSCBF: one can expect smaller a and bigger b values would
result in lower chance of escape.

B. Exit Probability Upper Bound

To derive the exit probability upper bound for CTSCBFs,
we begin with the continuous-time version of Lemma 1. In
this section, B(x, u) ∈ R1×mw is a shorthand notation for
∂xh(x)σ(x, u).

Lemma 2 (Comparison in Exit Probability, Continuous-Time).
Let h be an (a, b)-CTSCBF. For a set of parameters β ≤ b,
and δ ≥ 0, define the random process Lt by

L0 = h(X0)− δ,

dLt =

{
(−aLt + β)dt+B(Xt, ut)dWt if h(Xt) ≥ 0

(−aLt + β)dt else
(36)

and assume ut ∈ Uctscbf(Xt) for all t. Then,

P
[
min
0≤s≤t

h(Xs) < 0

]
≤ P

[
min
0≤s≤t

Ls < 0

]
. (37)
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Proof. The proof is very similar to that of Lemma 1. We will
show h(Xs) ≥ Ls a.s. for all s ∈ [0, t] if minτ∈[0,t] h(Xτ ) ≥
0. Assume nonnegativity of h(Xs) throughout the interval s ∈
[0, t], and let the stochastic process ∆s (s ∈ [0, t]) defined by

∆s := (h(Xs)− Ls)e
as. (38)

Itô’s lemma says ∆s follows the SDE

∆0 = δ,

d∆s = (Ah(Xs, us) + ah(Xs)− β)easds.
(39)

Since h is an (a, b)-CTSCBF, the quantity inside the bracket
(· · · ) is deterministically nonnegative

(· · · ) ≥ −ah(Xs) + b+ ah(Xs)− β = b− β ≥ 0, (40)

and since ∆0 = δ ≥ 0, we conclude that ∆s ≥ 0, for all
s ∈ [0, t].

With the help of this lemma, we obtain the following
probability bound.

Theorem 3 (Survival Rate Lower Bound, Continuous-Time).
If h : Rn → R is an (a, b)-CTSCBF and ut is picked from
Uctscbf(Xt), then

P [h(Xs) ≥ 0, ∀s ∈ [0, t]]

≥


(
1− Var(h(X0))

v2

)
e−γt if Eh(X0) ≥ v(

1− E[(h(X0)−v)2]
v2

)
e−γt else

(41)

for any pair of v ≥ b/2, γ ≤ 2a such that

v >
b

a
∧ ((a− γ)v + b)2 + (2a− γ)(1− 2bv) = 0 (42)

or
1√
2a

≤ v ≤ b

a
∧ γ = max

{
2a,

1

v2

}
. (43)

Proof. The structure of the proof is similar to that of Theorem
2. We firstly construct a supermartingale candidate and then
derive the conditions for the candidate to be a supermartingale.

For fixed β ∈ [0, b], δ ≥ 0, v ≥ 0, γ ∈ [0, 2a] and time
horizon t, define Ls as Lemma 2 and let

Ys = (Ls − v)2eγs − v2eγs + v2eγt (44)

be a continuous-time stochastic process defined on s ∈ [0, t].
Similarly to Theorem 2, Ys > v2eγt whenever Ls becomes
negative. We aim to search for the condition such that Ys

becomes a supermartingale, then Ville’s inequality gives

P
[
min
0≤s≤t

h(Xs) < 0

]
≤ P

[
min
0≤s≤t

Ls < 0

]
≤ P

[
max
0≤s≤t

Ys > v2eγt
]

≤ EY0

v2
e−γt

= 1−
(
1− E[(h(X0)−v−δ)2]

v2

)
e−γt

(45)
for any δ ≥ 0. Letting δ = max{Eh(X0)− v, 0} will give the
probability bound (41).

According to Itô’s lemma, Ys follows the SDE

dYs =

eγs · [(γ − 2a)L2
s + 2((a− γ)v + β)Ls + B̂sB̂

⊤
s − 2βv]ds

+ eγs · 2(Ls − v)B̂sdWs,
(46)

where B̂s takes the value B(Xs, us) if h(Xs) ≥ 0, and 0
otherwise. This Ys is a supermartingale if the quantity within
the bracket [· · · ] is nonpositive for any feasible (i.e., satisfying
the CTSCBF conditions) choice of Ls, Xs and us. Recall the
condition (33) gives B̂sB̂

⊤
s ≤ 1. Thus,

[· · · ] = (γ − 2a)L2
s + 2((a− γ)v + β)Ls + B̂2

s − 2βv

≤ (γ − 2a)L2
s + 2((a− γ)v + β)Ls + 1− 2βv.

(47)

We will require this bound to be nonpositive for all Ls ∈ R,
which gives the three conditions

γ − 2a ≤ 0, (48)
1− 2βv ≤ 0, (49)

((a− γ)v + β)2 + (2a− γ)(1− 2βv) ≤ 0. (50)

The first condition (48) is already an assumption. Combining
(49) and the condition β ∈ [0, b] gives 1/2v ≤ β ≤ b, and
hence a feasible β exists only if b ≥ 1/2v, giving v ≥ b/2.
Following the similar procedure to Theorem 2, consider the
following QP, which has three solution candidates.

β = arg min
1
2v≤β≤b

((a− γ)v + β)2 + (2a− γ)(1− 2βv)

=


1
2v (case A)
av (case B)
b (case C)

(51)

The optimal β for the unconstrained problem is β = av here.
Case A: A applies if av < 1/2v, i.e., v < 1/

√
2a. The

inequality (50) reduces to(
(a− γ)v +

1

2v

)2

≤ 0, (52)

which has the only solution γ = a + 1/2v2. However,
substituting v < 1/

√
2a yields γ > 2a, which contradicts

to the assumption γ ≤ 2a. Case A is therefore void.
Case B: B applies if 1/2v ≤ av ≤ b, i.e., 1/

√
2a ≤ v ≤

b/a. In this case, substituting β = av to (50) gives

0 ≥ (2av − γv)2 + (2a− γ)(1− 2v2)

= (2a− γ)(1− γv2),
(53)

which leads to (43).
Case C: Lastly, C applies if av > b, i.e., v > b/a, this

yields (42).

Similar to the discrete-time case, since (42) is a quadratic
equation with respect to γ, we can find a closed-form expres-
sion for γ as a piecewise smooth function of v. For many
pairs of a and b values, the values of v and γ that satisfies the
condition of Theorem 3 is plotted in Fig. 4. It can be clearly
seen that the γ value tends to drop with smaller a and higher
b values, which aligns with the intuition we started with. It is
the same with the discrete-time case that γ eventually reaches
0 with sufficiently large v and b.
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Fig. 4. The plot of γ values as in Theorem 3 (continuous-time version) for many pairs of a and b. Smaller γ values denote smaller decay of the
survival probability Γ(t). It can be clearly seen that the behavior follows the intuition that bigger a and b values result in higher chance of survival.
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Fig. 5. The simulated trajectories of the continuous-time obstacle avoid-
ance example. It can be seen that due to the unbounded stochasticity
of the acceleration, not all trajectories can survive and reach the goal
position. Theorem 3 provides a good conservative estimate of the Monte
Carlo simulated rate of survival.

C. Numerical Example

As a numerical example for the continuous-time case, we
consider the following simple double integrator system with
acceleration input and disturbance:

dXt =

([
02 12
02 02

]
Xt +

[
02
12

]
ut

)
dt+

[
02

σ · 12

]
dWt, (54)

where 02 and 12 denote zero and identity matrices of size 2×2,
respectively. The input ut ∈ R2 is assumed to be bounded by
ut ∈ [−1, 1]×[−1, 1] and σ > 0 is the parameter that describes
the amplitude of the two-channel Brownian disturbance Wt.
Given the initial condition at X0 = [−x0, 0, 0, 0]

⊤ (x0 > 1),
the control objective of this example is to drive the system to
the antipodal goal state Xgoal = [x0, 0, 0, 0]

⊤, while avoiding
a unit-disk obstacle whose center is located at the origin.
For obstacle avoidance, we build the following CTSCBF
candidate:

h(x) =
1

σ
·

(√√
x2
1 + x2

2 − 1 +
x1x3 + x2x4√

x2
1 + x2

2

)
, (55)

where xi is the i-th component of x. One can confirm that
for any a > 0 and b < 1/2σ, this h is a (a, b)-CTSCBF.
The evidence can be found in the appendix. As the reference
input signal, we employ a simple proportional-derivative (PD)
feedback controller

uref(Xt, t) = −K(Xt −Xgoal) (56)
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Fig. 6. Comparison with the probability bounds suggested by [14] and
[10]. It can be seen that the proposed Theorem 3 provides a significantly
tighter bound. The Monte Carlo simulation result (which is identical
to [16] in this case) was obtained using 1000 trials for each σ value.
Sim.=Simulation, Thm.=Theorem.

with feedback gain K = 4 · [12, 12]. The CBF-QP-like [18]
feedback controller

ut = argmin
u∈Uctscbf (Xt)

∥u− uref(Xt, t)∥2 (57)

was employed. The parameter values x0 = 1.1, a = 1, b =
0.6, σ = 0.5 were used.

The Monte Carlo simulation results compared with the
probability bound given by Theorem 3 is shown in Fig. 5. In
the simulation, we regard the state unsafe if there is no feasible
input that satisfies the SCBF constraint, or the trajectory
intersects with the obstacle, i.e., ∥Xt∥ < 1. In the plots, we
compare with [16] which is the tightest possible bound given
the CTSCBF constraints only. Note that this cannot be a fair
comparison since the bounds by [16] does not have a closed-
form expression and requires Monte Carlo simulations of an
Itô SDE.

D. Comparison with Prior Work

Similarly to the discrete-time case, we compare Theorem 3
with [14] and [10] using the following simple one-dimensional
stochastic system:

dXt = (−Xt + 1)dt+ σdWt (58)

where σ > 0 is a parameter that indicates disturbance magni-
tude. A (1, 1/σ)-CTSCBF h(x) = x/σ can be easily found for
this system. Since [14] and [10] require a barrier function B
(with B(x) ≤ 1 being the safety condition) that is nonnegative
everywhere, we used B(x) = e−x for them as suggested by
[10, Example 1]. For three different σ ∈ {0.1, 0.5, 1} values
and starting from the initial condition X0 = 1, the escape
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probability bounds are depicted in Fig. 6. In the plots, it can
be clearly seen that Theorem 3 provides a tighter bound.

IV. CONCLUSION AND FUTURE WORK

This paper suggested a lower bound of the probability at
which a stochastic system will exit the given set equipped with
a valid SCBF for both discrete-time and continuous-time cases.
The probability is based on Ville’s inequality and a squaring
trick was employed to make the bound explicitly depend on
the variance (discrete-time) and diffusion rate (continuous-
time) of the dynamics. Multiple simulation experiments were
conducted to verify the validity of the probability bound, and
it was empirically found that the proposed bound is tighter
than existing martingale-based bounds.

We suggest three possible future research directions as fol-
lows. Firstly, although the probability bounds presented in this
paper appear to be tighter than those by existing works, sig-
nificant conservativeness remains compared to the simulated
result. While tighter bounds were obtained by employing the
squaring technique, it is an interesting future research direction
to consider a wider variety of supermartingale constructions
(as in (15) and (44)) which might result in a better bound.
Additionally, since the probability bound was derived using
the same technique for both discrete- and continuous-time
systems, we expect that this paper’s result can be extended
to stochastic hybrid systems which exhibit both discrete and
continuous properties.

APPENDIX I
THE FUNCTION h IN (28) IS A DTSCBF

Given Xt = [x1, x2]
⊤, let ut = 1 and assume h(Xt) ≥ 0,

i.e., x1 ≤ 25 and x2 ≤ 40. Since h is a Lipschitz continuous
function with Lipschitz constant 4, it is easy to find that
Var[h(Xt+1)] ≤ 42 · Var[Xt+1] = 4 · (0.152 + 0.22) = 1.
Suppose h(Xt) ≥ 0, and write Xt+1 = [x′

1, x
′
2]

⊤. Conditioned
on Xt, for the first case h(Xt+1) = 100− 4x′

1,

h(Xt+1) = 100− 4x′
1

= 100− 4 · (0.9x1 + 0.05x2 + 0.25 + 0.15wt)

≥ 0.9 · (100− 4x1) + 1− 0.6wt

≥ 0.9h(Xt) + 1− 0.6wt,
(59)

and for the second case h(Xt+1) = 160− 4x′
2,

h(Xt+1) = 160− 4x′
2 = 160− 4 · (0.99x2 + 0.3 + 0.2zt)

= 0.99 · (160− 4x2) + 0.4− 0.8zt

≥ 0.99h(Xt) + 0.4− 0.8zt.
(60)

Since Ewt = Ezt = 0, combining the above two gives

Eh(Xt+1) ≥ 0.9h(Xt) + 0.4. (61)

Thus, h is a (0.9, 0.4)-DTSCBF.

APPENDIX II
THE FUNCTION h IN (55) IS A CTSCBF

Let u = [x1, x2]
⊤/
√
x2
1 + x2

2 ∈ [−1, 1] × [−1, 1], and
differentiate to get

Ah(x, u) = 1
σ

(
(B)

2R·(A) +
x2
3+x2

4

R + 1− (B)2

R3

)
, (62)

where (A) =
√
R− 1, (B) = x1x3 + x2x4, R =

√
x2
1 + x2

2.
For any x such that h(x) = (A) + (B)/R ≥ 0,

Ah(x, u) ≥ 1
2σ +

(x2
1+x2

2)(x
2
3+x2

4)−(x1x3+x2x4)
2

σ(x2
1+x2

2)
3/2 ≥ 1

2σ , (63)

where the Cauchy-Schwartz inequality was used to obtain the
second inequality.
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