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Abstract— Constructing a large-enough control invariant
set that fits within a given state constraint is a fundamental
problem in safety-critical control but is known to be dif-
ficult, especially for large or complex spaces. This paper
introduces a safe control framework of utilizing PCBF:
continuously parametrized high-order control barrier func-
tions (HOCBFs). In PCBF, each choice of parameter corre-
sponds to a control invariant set of relatively simple shape.
Invariance-preserving control is done by dynamically se-
lecting a parameter whose corresponding invariant set lies
within the safety bound. This eliminates the need for syn-
thesizing a single complex HOCBF that matches the entire
free space. It also enables easier adaptation to diverse
environments. By assigning a differentiable dynamics on
the parameter space, we derive a lightweight feedback
controller based on quadratic programming (QP), namely
PCBF-QP. We also discuss on how to build a valid PCBF
for a class of systems and how to constrain the parameter
so that the invariant set does not exceed the safety bound.
Finally, simulation experiments are conducted to validate
the proposed approach.

Index Terms— Safety-critical control, constrained con-
trol, nonlinear systems, robotics.

I. INTRODUCTION

Ensuring safety when designing a control law for a con-
trolled system is very important in many real-world applica-
tions. In order to address not myopic but persistent satisfaction
of the safety requirements, safety should be addressed from
the perspective of set invariance [1]. A typical safety-critical
control methodology therefore aims for creating a control
invariant set that is entirely contained within the pre-given set
of allowable states. An invariance-preserving control is then
applied to keep the system’s state within this set.

One of the most widely used approaches to construct a
control invariant set is to utilize a control barrier function
(CBF) [2]. CBF is a Lyapunov-like scalar function defined on
the state space, whose super zero level set defines the control
invariant set. Its main strength comes from its simplicity
of encoding invariance using a single scalar function. In
addition, once synthesized, a valid CBF offers a computation-
ally efficient means of enforcing safety constraints through
quadratic programming (QP), namely CBF-QP [3]. CBF-QP
introduces one additional inequality constraint to the input
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bounds and can be solved in real-time by any off-the-shelf
convex programming solver.

These advantages offered by CBF and CBF-QP have drawn
researchers’ significant attention, leading to an extensive body
of literature regarding practical applications, especially in
robotics [4]–[8] and also in other topics [9], [10]. There also
have been works to employ CBFs in a wider range of applica-
tions, for example, safety-critical reinforcement learning [11],
control of systems with stochasticity [12], [13], adapting to
changing dynamics [14], time-varying CBFs for satisfaction of
signal temporal logic specifications [15]. The recent concept
of high-order CBF (HOCBF) [16] generalizes the notion of
CBF to cover high relative degree.

The common aim of these methods is to construct a barrier
certificate corresponding to a invariant set that fits within the
given state constraints. Considering the control performance,
it is obviously important to obtain a valid barrier function
that provides a sufficiently large control invariant set within
the prescribed limit. Unfortunately, synthesizing a valid one is
often not straightforward and easily becomes computationally
burdensome, particularly with large or complex environments.

In this paper, we introduce an invariance-preserving control
framework that uses continuously parametrized spectrum of
HOCBFs, which we call parametrized CBF (PCBF). PCBF is
a Lyapunov-like scalar function that takes not only the state but
also a parameter which lives in a continuous parameter space.
For each fixed parameter, PCBF is a valid yet relatively simple
HOCBF that defines a small building-block control invariant
set. Given a set of safe parameters (whose corresponding
invariant sets lie within the safety bound), a large control
invariant set that spans the entire free space is constructed
by taking the union of them.

The proposed PCBF framework decouples the problem of
synthesizing invariance guarantees into the following two:

Problem 1. Given the system dynamics, construct a PCBF.
This includes designing the parameter space and finding the
building-block invariant sets.

Problem 2. Given the safety bound and the PCBF, construct
the parameter constraint that describes the safe parameter set.

Addressing Problem 1 does not require considering the po-
tentially complex safety bound; and given the building-block
invariant sets, Problem 2 is purely geometric (it is a problem
of determining set inclusion) and does not explicitly depend on
the system dynamics. In many cases, this significantly reduces
the computational burden compared to directly searching for a
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single valid barrier certificate that spans the entire free space.
Moreover, it gives adaptability to various environments, since
only the parameter constraint (and not the PCBF) needs to be
resynthesized when shifting to a new safety bound.

Finding a general answer to the two problems (i.e., a
systematic way of constructing a PCBF and the parameter con-
straint from the dynamics model only) is hard and remains an
open problem. However, in this paper, we find that continuous
symmetry of the system dynamics, which is often found in a
wide range of real-world dynamical systems, naturally extends
a single HOCBF to give a valid PCBF. We also introduce
a design process of the building block invariant set using a
stabilizing controller and a Lyapunov function. We also briefly
discuss on how the parameter constraint should be constructed.

Once a valid PCBF and the parameter constraints are
obtained, we are then interested in the invariance-preserving
control problem:

Problem 3. Using the PCBF and the parameter constraint,
synthesize a computationally lightweight feedback control that
renders the resulting safe set (the union of the building blocks)
invariant.

To guarantee invariance, we assign a single integrator dynam-
ics on the parameter space and augment it to the system.
The control is done with respect to the augmented system
in a manner that the parameter always stays within the safe
parameter set, and the state stays within the building-block
invariant set corresponding to the current parameter value.
Leveraging the continuity of the parameter space, we devise a
CBF-QP-like safety filter based on PCBF (PCBF-QP), which
is capable of constraining the augmented system as mentioned.

The definition of PCBF in this paper is the high-order
generalization of our recent conference paper [17], which
briefly introduced PCBF and PCBF-QP for the relative-degree-
one case. On that, the discussions on the barrier function
synthesis, i.e., Problem 1 and Problem 2, are new in this
paper. We present two numerical examples, one demonstrates
the barrier function design process abovementioned, the other
addresses the high-order case. The remainder of this paper is
organized as follows. We start by introducing the necessary
concepts and assumptions in Section II. The concept of PCBF
and its definition is presented in Section III. Then follows
Section IV in which we derive PCBF-QP and answer Problem
3. In Section V, we discuss the design process and give a
partial answer to Problem 1 and Problem 2. The numerical
examples are presented in Section VI, which is followed by
the summary and outlook of the work in Section VII.

II. PRELIMINARIES

A. Notation

For positive integers l, m, and n, Rl and Rm×n denote
the set of l-dimensional real column vectors and matrices of
size m × n, respectively. An inequality between two vectors
denotes that it is satisfied in an elementwise manner. We
use the notation ∂ξβ(ξ) to denote the partial derivative of β
with respect to argument ξ. The Lie derivative of a function
V : Rn → R along a vector field f : Rn → Rn is written

as LfV (x) = ∂xV (x) · f(x). If a function f is r times
continuously differentiable, we write f ∈ Cr. Throughout this
paper, we use the symbols x ∈ Rn, u ∈ Rm, k ∈ Rnk , and
t ∈ [0,∞) to denote state, input, CBF parameter, and time,
respectively. The roman-font x, u, k are used to emphasize
that they are trajectories, i.e., functions of time.

B. Dynamics

In this paper, we consider the following nonlinear time-
invariant control-affine system dynamics:

ẋ(t) = f(x(t)) + g(x(t))u(t). (1)

The functions f : Rn → Rn and g : Rn → Rn×m are locally
Lipschitz functions so that given any initial value x(0) and a
measurable input trajectory u(t), there exists a unique solution
x at least locally. The input is assumed to be bounded by a
set of linear inequalities, i.e.,

u(t) ∈ U = {u ∈ Rm : Auu ≤ bu}, ∀t ∈ [0,∞) (2)

where Au and bu are a matrix and a column vector with
appropriate sizes.

C. High-Order Control Barrier Functions

Definition 1 (Relative Degree [18, Definition 13.2]). The
output h : Rn → R of the system (1) has relative degree
r if LgL

j
fh(x) = 0 for all x ∈ Rn and j ∈ {0, · · · , r − 2},

and LgL
r−1
f h(x) ̸= 0 almost everywhere on Rn.

In this subsection, we provide a brief overview of HOCBFs
[16]. Let h : Rn → R be a Cr output for the system (1)
with relative degree r. With this, we want to drive the system
in a way that h(x(t)) ≥ 0 is satisfied throughout the interval
t ∈ [0,∞). The vector field f appearing in the dynamics (1) is
assumed to be at least Cr−1, with its (r−1)-th order derivative
being Lipschitz.

Define a sequence of functions ψ(·) : Rn → R as follows:

ψ0(x) = h(x)

ψj(x) = ψ̇j−1(x) + αj(ψj−1(x)), ∀j ∈ {1, · · · , r − 1}
(3)

where αj(·), j ∈ {1, · · · , r − 1} are class K functions1. For
the sake of well-definedness of ψj , αj is assumed to be at
least Cr−j . Note that the relative degree of ψj is at least r− j
and thus the term ψ̇j−1 in the second line can be written as a
function of x only: ψ̇j−1(x) = Lfψj−1(x). The key idea of
HOCBF is that

ψj(x) = ψ̇j−1(x) + αj(ψj−1(x)) ≥ 0 (4)

gives ψj−1(x) ≥ 0 if ψj−1(·) value starts at a nonnegative
initial condition. If there exists a class K function αr such
that there exsts an input u ∈ U for any x such that

ψ̇r−1(x, u) + αr(ψr−1(x))

= Lfψr−1(x) + Lgψr−1(x) · u+ αr(ψr−1(x)) ≥ 0,
(5)

1A function α : [0,∞) → R is a class K function if it is continuous,
strictly increasing, and α(0) = 0.
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then it will initiate a chain of nonnegativity certificates and
eventually render the set

C =

r⋂
j=1

Cj (6)

invariant, where for each j ∈ {1, · · · , r} the set Cj is defined
as Cj = {x ∈ Rn : ψj−1(x) ≥ 0}.

Definition 2 (High-Order CBF [16]). A function h : Rn → R
having relative degree r with respect to the system (1) is a
HOCBF, if there exist class K functions αj ∈ Cr−j , j ∈
{1, · · · , r} such that there exists an input u ∈ U (depending
on x) satisfying

Lfψr−1(x) + Lgψr−1(x) · u+ αr(ψr−1(x)) ≥ 0, (7)

for all x ∈ C, where the functions ψ(·) are defined recursively
as ψ0(x) = h(x), ψj(x) = Lfψj−1(x) + αj(ψj−1(x)) for
j ∈ {1, · · · , r − 1}, and C = {x : ψj−1(x) ≥ 0, ∀j ∈
{1, · · · , r}}.

Remark 1. CBF is the special case r = 1 of Definition 2.

Now, let Uhocbf(x) = {u ∈ U : (7) holds.}. It can be easily
seen that Definition 2 ensures nonemptyness of Uhocbf(x) for
all x ∈ C. Any feedback controller u(x, t) will render the
set C invariant if u(x, t) ∈ Uhocbf(x) for all x ∈ C and
t ∈ [0,∞). Leveraging this, one can construct a QP-based
safety filter which is a generalization of [3]:

u(t, x) = arg min
u∈Rm

∥u− uref(t, x)∥2W
s.t. u ∈ Uhocbf(x),

(8)

where ∥·∥W is a weighted two-norm, which can be solved
at a very low computational cost using off-the-shelf convex
programming solvers.

III. PARAMETRIZED CBF
Given the basic definitions and the necessary assumptions,

let us begin the discussion by setting up the problem in more
detail. Let A ⊂ Rn be the set of allowable states. For example,
for a mobile robot collision avoidance task, A contains all
robot states not overlapping with the obstacles. While A is not
necessarily control invariant, not every state in A is actually
safe, and we want a large control invariant set C such that
C ⊆ A. As mentioned in the introduction, directly searching
for a HOCBF (and also the corresponding class K functions)
for this purpose often becomes computationally intractable.
This is because it requires solving the variational inequality
(7) subject to the inequality condition C ⊆ A, i.e.,

(ψj−1(x) ≥ 0, ∀j ∈ {1, · · · , r}) =⇒ x ∈ A. (9)

On the other hand, constructing a simple HOCBF without
considering the constraint C ⊆ A is relatively simpler in
many cases. Moreover, it is often easy to obtain a continuous
spectrum of HOCBFs, rather than a single one. That is, we
can often find a single scalar function h : Rn×K0 → R such
that for any k ∈ K0 ⊆ Rnk , h(·, k) is a valid HOCBF that
satisfies (7). We call such h a PCBF.

Definition 3 (PCBF). A function h : Rn × Rnk → R is
a PCBF of relative degree r if there exist functions αj (∈
Cr−j) : R×Rnk → R (j ∈ {1, · · · , r− 1}) such that αj(·, k)
are class K functions that make h(·, k) a valid HOCBF of
relative degree r for every fixed k ∈ K0 ⊆ Rnk .

Remark 2. PCBF is a generalization of HOCBF: Consider
the case where K0 is a set with only one element. It also
generalizes the special case r = 1 presented in [17].

Similarly to HOCBFs, we define a sequence of multivariate
functions ϕj(x, k) as follows.

ϕ0(x, k) = h(x, k)

ϕj(x, k) = Lfϕj−1(x, k) + αj(ϕj−1(x, k), k),
(10)

and the sets
Cj(k) = {x ∈ Rn : ϕj−1(x, k) ≥ 0}, j ∈ {1, · · · , r},

C(k) =

r⋂
j=1

Cj(k).
(11)

The definitions for ϕ(·) are very similar to ψ(·) from (3), and
their values are actually identical given stationary (i.e., fixed)
k. Still, it is important to make distinctions between the two
definitions (we used different notations here), and with time-
varying parameter k(t), the value of ϕj(x(t), k(t)) might not
be equal to d

dtϕj−1(x(t), k(t)) + αj(ϕj−1(x(t), k(t)), k(t)).
Observe that for every k ∈ K0, the set C(k) is control

invariant since h(·, k) is a valid HOCBF. Further, since the
union of control invariant sets is also control invariant [19,
Proposition 4.13], for any K ⊆ K0,

C =
⋃
k∈K

C(k) ⊆ Rn (12)

is also control invariant. While the sets C(k) are not nec-
essarily safe (i.e., C(k) ∈ A), given A, we can properly
select a subset K such that C is not only control invariant
but also C ⊆ A, without the need for directly addressing the
set inclusion condition (9).

Notice that finding a valid PCBF does not depend on
the given environment A. Additionally, given a PCBF h,
constructing a valid parameter constraint K that matches the
safety bound A does not require explicit consideration of the
dynamics. This enables decoupling of the barrier synthesis
problem, as delineated in Problem 1 and Problem 2.

IV. INVARIANCE-PRESERVING CONTROL USING PCBF
In Section II, we have seen that we can derive a com-

putationally lightweight QP-based safety filter which takes a
reference input signal and gives a safe input which renders
the HOCBF invariant set C (from (6)) invariant, once a valid
HOCBF is given. In this section, we derive PCBF-QP, a QP-
based computationally light safety filter that renders the PCBF
invariant set C (from (12)) invariant.

A. Constructing Input Constraints using
Parameter-Augmented Dynamics

Rendering C (the PCBF invariant set) invariant is equivalent
to driving the state trajectory x(t) in a way that there exists at
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least one choice of parameter k ∈ K such that x(t) ∈ C(k). A
simple but naive approach for this is to pick a parameter k ∈ K
which makes ϕj−1(x, k) ≥ 0 for all j ∈ {1, · · · , r}, along
with the control input u that satisfies the HOCBF constraint.
That is, similarly to [7], select u(t) and k(t) that solve

min
u,k

J(x, k, u, t)

s.t. Lfϕr−1(x, k) + Lgϕr−1(x, k)u+ αr(ϕr−1(x, k), k) ≥ 0

ϕj−1(x, k) ≥ 0 ∀j ∈ {1, · · · , r}, k ∈ K, u ∈ U
(13)

with x = x(t), where J is an appropriate cost function. The
problem in this form is that (13) is generally a nonlinear
and nonconvex problem whose optimization typically requires
heavy computation, making it inappropriate for real-time feed-
back synthesis. Moreover, it is very likely that the solution
is discontinuous with respect to x(t), which may result in a
severe chattering phenomenon.

Thus, instead of directly optimizing over the parameter
space, we will require the parameter k to evolve continuously
with respect to time by controlling it with through its time
derivative. Consider the following augmented system

ẋ(t) = f(x(t)) + g(x(t))u(t)

k̇(t) = v(t),
(14)

where (x(t), k(t)) ∈ Rn × Rnk is the augmented state,
(u(t), v(t)) ∈ Ū = U × Rnk is the augmented input. Now,
the parameter k is no longer an optimization variable but the
controller’s internal state that has to be controlled by the virtual
input v ∈ Rnk .

At this point, we introduce an additional (yet not restrictive)
assumption that K can be represented using differentiable
inequality constraints, i.e., K = {k ∈ Rnk : ρi(k) ≥ 0, ∀i ∈
I}, where ρi are differentiable functions, I is a finite index set,
with the regularity condition ∂kρi(k) ̸= 0 if ρi(k) = 0. With
respect to the augmented system (14), consider the disjoint
union of C(k), i.e.,

C̄ =
⊔
k∈K

C(k)

= {(x, k) : k ∈ K, ϕj−1(x, k) ≥ 0 ∀j ∈ {1, · · · , r}}.
(15)

We will construct a constraint on the augmented input to
render C̄ invariant with respect to the augmented system. Since
the projection of C̄ onto the original state space Rn is C,
invariance of C̄ under the augmented dynamics directly relates
to invariance of C under the original dynamics.

A necessary condition for C̄ to be control invariant with
respect to the augmented system is the invariance of K with
respect to the single-integrator parameter dynamics. Thus, if
k(t) ∈ K, there must exist a virtual input v ∈ Rnk such that

ρi(k(t)) = 0 ⇒ d

dt
ρi(k(t)) = ∂kρi(k(t)) · v ≥ 0 (16)

for all i ∈ I . Following the motivation of barrier function
approaches including CBFs, we smoothen this requirement by
introducing the inequality constraint

∂kρi(k) · v + βi(ρi(k)) ≥ 0, (17)

for all k ∈ K and i ∈ I . Here, βi is a class K function.
Similarly, for ϕj−1(x, k) to be kept nonnegative, we require

ϕ̇j−1(x, k, u, v) + αj(ϕj−1(x, k), k)

= Lfϕj−1(x, k) + Lgϕj−1(x, k) · u+ ∂kϕj−1(x, k) · v
+ αj(ϕj−1(x, k), k)

= ϕj(x, k) + ∂kϕj−1(x, k) · v ≥ 0
(18)

for all j ∈ {1, · · · , r − 1}, and

ϕ̇r−1(x, k, u, v) + αr(ϕr−1(x, k))

= Lfϕr−1(x, k) + Lgϕr−1(x, k) · u+ ∂kϕr−1(x, k) · v
+ αr(ϕr−1(x, k), k) ≥ 0.

(19)
To obtain the last equality of (18), we used the fact that
ϕj(x, k) = Lfϕj−1(x, k) + αj(ϕj−1(x, k)), and the term
Lgϕj−1(x, k) · u reduces to zero since the relative degree of
ϕj−1(·, k) with respect to the original dynamics (1) is r−j+1,
which is greater than 1.

Combining (17), (18), and (19), we can consider the fol-
lowing feasible set on the augmented input space:

Ūpcbf(x, k) ={
(u, v) ∈ Ū :

(18) ∀j ∈ {1, · · · , r − 1}, (19),
∂kρi(k) · v + βi(ρi(k)) ≥ 0, ∀i ∈ I

}
,

(20)

which is nonempty for any (x, k) ∈ C̄. This is be-
cause for any u such that Lfϕr−1(x, k) + Lgϕr−1(x, k)u +
αr(ϕr−1(x, k), k) ≥ 0, it can be easily seen that (u, 0) ∈
Ūpcbf(x, k). The existence of such u is guaranteed for all
(x, k) ∈ C̄ since h(·, k) is a HOCBF.

Remark 3. PCBF can also handle time-varying parameter
constraints relaxing with respect to time, for example, an
exploration task. A sufficient yet not conservative condition
for this is the existence of a class K function βi for every
i ∈ I such that ∂tρi(k, t) + βi(ρi(k, t)) ≥ 0. Then, replacing
(17) with ∂tρi+∂kρi ·v+βi(ρi) ≥ 0 does not break invariance,
since v = 0 is still a feasible solution.

Remark 4. PCBF does not have relative degree r with respect
to the augmented dynamics. That is why (20) has an inequality
constraint for every j. Another perspective of viewing this
is that with respect to the augmented dynamics, we have
constructed r + |I| barrier-like functions, all with relative
degree 1, the intersection of whose super zero level sets
defines C̄, in a way that they are all compatible within C̄, i.e.,
Ūpcbf(x, k) is nonempty for all (x, k) ∈ C̄. This compatibility
is not general for naive composition of multiple (HO)CBFs, as
there might not exist a control input that satisfies all the input
constraints: The intersection of multiple control invariant sets
is in general not invariant.

B. PCBF-based QPs for Invariance Guarantees
Consider the following optimization-based controller, which

we call PCBF-based QP (PCBF-QP): Given the augmented
dynamical system (14) and PCBF h, solve

(u(t), v(t)) = arg min
(u,v)∈Ū

J(x(t), k(t), u, v, t)

s.t. (u, v) ∈ Ūpcbf(x(t), k(t)),
(21)
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where J(· · · ) is a cost function that is strictly convex quadratic
with respect to (u, v). This QP always has a unique global
minimizer for any (x(t), k(t)) ∈ C̄, since Ūpcbf(x(t), k(t)) is
nonempty (as mentioned above) and J is strictly convex with
respect to the decision variables. A decent choice of the cost
function J that works fine for many cases is to let J take the
CBF-QP-like form:

J(x, k, u, v, t) = ∥u− uref(x, t)∥2W + µ∥v∥2V , (22)

where ∥·∥W and ∥·∥V are weighted two-norms, uref is the
reference input signal, µ > 0 is a tunable and usually very
small parameter which provides strict convexity and enhances
numerical stability of the controller.

V. PCBF AND PARAMETER SET DESIGN

A general framework to construct the PCBF and the param-
eter constraints is in general not straightforward still remains
an open problem. However, in this section, we introduce some
design techniques that apply to a class of practical dynamical
systems.

A. Symmetry-Induced PCBFs
Definition 4 (Continuous Symmetry of Dynamics). The dy-
namics (1) is said to have continuous symmetry if there exists
a Lie group G acting on the state space Rn such that for any
q ∈ G, if the state and input trajectory pair (x,u) solves the
ODE (1), then also does the pair (q ◦ x,u). Here, q ∈ G as a
function (q : Rn → Rn) denotes the Lie group action.

A system model found in real-world often (and almost
always for a mobile robot) exhibits a continuous symmetry.
This means that the dynamics is invariant under a continuous
spectrum of coordinate changes. For example, the kinematics
and dynamics of a planar mobile robot can be written in
the same form regardless of which SE(2) coordinate we
choose. As delineated in Definition 4, continuous symmetries
can be mathematically understood using Lie group actions.
Continuous symmetry provides a simple yet powerful way of
constructing PCBFs, which we call symmetry-induced PCBFs.

Theorem 1 (Symmetry-Induced PCBF). Let ĥ : Rn×K̂0 → R
be a PCBF (with relative degree r, K̂0 ⊆ Rn̂k ) for a system
with continuous symmetry with the corresponding Lie group of
symmetry being G. Then, h(x, k) = ĥ(q−1(x), k̂) is a PCBF
with the new parameter k = (q, k̂) ∈ K0 = G× K̂0.

Proof. We will prove the equivalent statement: If h : Rn → R
is a HOCBF, then h′ = h ◦ q−1 also is.

Let (x,u) : [0, T ) → Rn×U be a dynamically feasible state-
input trajectory pair where T is a positive time horizon, i.e., x
is the unique solution to the ODE ẋ(t) = f(x(t))+g(x(t))u(t)
given initial condition x(0). Given the continuous symmetry
and the same u, if z : [0, T ) solves the initial value problem
ż(t) = f(z(t)) + g(z(t))u(t) and z(0) = q(x(0)), then for all
t ∈ [0, T ), z(t) = q(x(t)).

Thus, for any testing function β : Rn → R, β(x(t)) =
(β◦q−1◦q◦x)(t) = (β◦q−1)(z(t)). This means that under the
same input signal u(t),

(
d
dt

)j
β(x(t)) =

(
d
dt

)j
(β ◦ q−1)(z(t))

up to any order j ∈ {0, 1, · · · } as long as they exist. Letting
β be the ψ(·) functions concludes the proof.

Symmetry-induced PCBFs are also powerful in terms of
parameter constraint construction, since the shape of the
invariant sets C(k) remain unchanged under the orbit of the
Lie group action.

Theorem 2. Suppose h is a symmetry-induced PCBF with the
Lie group of symmetry and the parameter space being G and
G × K̂0, respectively. Let Ce(k̂) = C((1G, k̂)), where 1G is
the identity element of G. Then, C(k) = q(Ce(k̂)) = {q(x) :
x ∈ Ce(k̂)} (k = (q, k̂)).

Proof. The result follows directly from the definition of
symmetry-induced PCBF h(x, k) = ĥ(q−1(x), k̂).

Theorem 2 tells that C(k)-s are transformed copies of Ce(k̂),
which reduces the search space for constructing the parameter
constraint. For example, if A is expressed as

A = {x ∈ Rn : li(x) ≥ 0, ∀i ∈ I}, (23)

then any ρi such that

ρi(k) ≤ min
x∈Ce(k̂)

(li ◦ q)(x) (24)

would make C ⊆ A. Notice that the search space on the right
hand side is reduced to Ce(k̂).

B. PCBF Construction using Stabilizing Control
Let x0 ∈ Rn be a point in state space to which the system

is stabilizable. That is, there exists a Lyapunov function V (·)
such that V (x) ≥ 0 for all x, V (x0) = 0 if and only if x = x0,
and

min
u∈U

LfV (x) + LgV (x)u ≤ 0. (25)

Then, for any b ≥ 0, b − V (x) is a CBF (i.e., a HOCBF
with r = 1) [7], and therefore h(x, b) = b − V (x) is a
PCBF with parameter b ∈ K0 = {b ∈ R : b ≥ 0}.
In many cases, finding a valid Lyapunov function is easier
than searching directly for a (HO)CBF, not only because
Lyapunov functions are sometimes handcraftable, but also
because there are readily a handful of existing nonlinear
control methodologies designed specifically for stabilization
of nonlinear systems. These include but not are limited to
backstepping control, sliding mode control, neural Lyapunov
control [20], all coming with valid Lyapunov functions. With
appropriate setting, Hamilton-Jacobi reachability [21], [22]
method can also be used to find a Lyapunov function.

Combined with the symmetry-based technique of the pre-
vious subsection, this Lyapunov-based method serves as an
especially powerful tool in tasks such as collision avoidance of
mobile robots. If the system exhibits a continuous symmetry,
the system being stabilizable to x0 ∈ Rn automatically implies
it is also stabilizable to q(x0), for any q from the group of
symmetry G, and as such, h(x, k) = b−V (q−1(x)) is a valid
PCBF with the parameter k being k = (b ≥ 0, q ∈ G). In
other words, the PCBF framework allows synthesizing a safety
filter for complex environments using only a single stabilizing
controller.
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Ego Vehicle Front Vehicle

Fig. 1. The inter-vehicle distance maintenance scenario (Section VI-
A). The ego vehicle is required to maintain a safe distance of δ from the
front vehicle. The position of the ego vehicle and the front car are x1

and pf , respectively. Their velocities are x2 and ṗf .

C. Parameter Augmentation using Auxiliary Variables

Another advantage offered by the PCBF framework is that
it allows augmenting the parameter space using auxiliary
variables. That is, given a PCBF h, the user can build a
new PCBF h̄(x, k̄) = h(x, k) with the augmented parameter
k̄ = (k, η) ∈ K̄ = K0 × E, where η ∈ E ⊆ Rη is the
auxiliary variable. One can adopt many constraint engineering
techniques from mathematical optimization [23] to mitigate
the burden of building the parameter constraints. For example,
if the shape of A is complex to handle, one can define a simple-
shaped (e.g., polygonal or ellipsoidal) set-valued function
D(η) ⊆ Rn, and specify the parameter constraints to ensure
D(η) ⊆ A and C(k) ⊆ D(η).

VI. CASE STUDY

In this section, we present two simulation results that well
exemplify practical applications of the proposed framework. In
the first scenario, we demonstrate PCBF-QP with r = 2 using
a simplified vehicle dynamics model, where a time-varying
parameter constraint (see Remark 3) is employed. The second
scenario addresses mobile robot collision avoidance problem,
where the design techniques introduced in Section V are used.

A. Inter-Vehicle Distance Maintenance

Consider the following simplified vehicle dynamics:

ẋ =

[
ẋ1
ẋ2

]
= f(x) + g(x)u =

[
0 1
0 0

] [
x1
x2

]
+

[
0
1

]
u, (26)

where each component of the state x = [x1 x2]
⊤ ∈ R2 denote

the position and the velocity of the vehicle, u ∈ [uL, uU ] ⊂ R
denotes the acceleration input. The two parameters uL < 0
and uU > 0 denote the control bounds. As shown in Fig. 1,
the goal of the ego vehicle is to move forward at a prescribed
speed vref > 0 while maintaining a safe distance of δ > 0 with
the preceding vehicle at position pf (t) and velocity ṗf (t). We
assume that the front car never moves backwards, i.e., ṗf (t)
is nonnegative.

The PCBF h is designed as follows:

h(x, k) = k − x1 (27)

where k ∈ R is the parameter whose physical interpretation
is the position on the road before which the vehicle is able
to come to a complete stop. With α1(z, k) =

√
az + ϵ2 − ϵ

and α2(z, k) = γz (z ≥ 0, ϵ > 0, γ > 0), this h satisfies the

condition Definition 3 if a ≥ −2/uL > 0. With them, ϕ(·) are
given as follows:

ϕ0(x, k) = h(x, k) = k − x1

ϕ1(x, k) = −x2 +
√
a(k − x1) + ϵ2 − ϵ.

(28)

To avoid collision with the front vehicle, we introduce one
time-varying parameter constraint

ρ(k, t) = pf (t)− k − δ. (29)

It is straightforward to check that ρ(k, t) ≥ 0 if and only
if pf (t) − p ≥ δ for all x = (p, v) ∈ C(k), and ρ(k, t)
always increases with respect to time and thus the conditions
in Remark 3 holds with any class K function β.

In order to encourage the ego vehicle to move at a
speed close to vref , we make use of PCBF-QP with cost
J(x, k, u, v, t) = (sat(uref(x, t)) − u)2 + µv2 where the
reference input uref is given as a simple linear speed feedback
uref(x, t) = L(vref−x2). Here, sat(·) is the saturation function
that clips off the excessive input to fit the bound u ∈ [uL, uU ],
and µ and L are constant positive reals.

Simulation was conducted using uL = −1, uU = 1, δ =
0.5, ϵ = 0.1, a = 2, γ = 2, β(y) = 2y, µ = 0.01 and
L = 1. The ego vehicle starts at x = 0 and k = 0.1, and its
reference speed is vref = 1.5. For the leading vehicle behavior,
we consider three different scenarios.

1) pf (t) = 1 + t: The front vehicle moves at a constant
speed which is slower than vref .

2) pf (t) = 1+ t+0.5 sin(2t): The front vehicle repeatedly
accelerates and decelerates.

3) pf (t) = max{1+ t, 6}: The front vehicle first moves at
a constant speed, and then suddenly stops at t = 5.

The results for three scenarios can be found in Fig. 2. As
shown in the plots, the ego vehicle successfully keeps the
safe distance from the preceding vehicle and the input limits
simultaneously through PCBF-QP.

B. Collision-Free Mobile Robot Navigation

In this example, following the design techniques explained
in Section V, we will construct a PCBF for a wheeled
ground rover navigating in obstacle-cluttered space obeying
the following simplified bicycle-like dynamics:

ẋ =


ẋ1
ẋ2
ẋ3
ẋ4

 = f(x) + g(x)u =


x3 cosx4
x3 sinx4

0
0

+


0 0
0 0
1 0
0 x3

[
u1
u2

]
,

(30)
where the components of x = [x1, x2, x3, x4]

⊤ ∈ R4 denote
the horizontal and vertical positions, forward velocity, and
heading angle of the robot, respectively, which are controlled
through acceleration (u1 ∈ R) and steering (u2 ∈ R) inputs.
We assume that the inputs are bounded by a box constraint
u ∈ U = [−1, 1]× [−1, 1].

The mission for this example is to track the reference input
given by the user, while avoiding multiple circular shaped
obstacles. The number of obstacles is N , and for each i ∈
{1, · · · , N}, the i-th obstacle is located at position (zi,1, zi,2)
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Fig. 2. Simulation result for Section VI-A. Regardless of the front vehicle behavior (as long as it does not reverse), PCBF-QP is capable of
keeping the ego vehicle’s position x1 at least δ = 0.5 apart from the front vehicle’s position pf . The values of ϕ(·) and ρ are simultaneously kept
nonnegative through PCBF-QP.

       

  

 

 

  

0 s

       

  

 

 

  

20 s

       

  

 

 

  

40 s

       

  

 

 

  

80 s

Fig. 3. Four snapshots taken from the simulation experiment on collision-free mobile robot navigation (Section VI-B). The obstacle configuration
(position and size) is randomly chosen, and the reference input uref is manually given by a human operator who is instructed to transmit aggressive
inputs. In each subfigure, the red ellipse denotes C(k), the dotted ellipse is C(k) buffered by the robot’s size, black solid line is the robot’s trajectory
on the x1-x2 plane, gray shaded regions are the obstacles, and the blue polygonal region is the collision-free space defined by the separating
hyperplanes described by the auxiliary variable η. The boxes on the top left of each snapshot denotes the time the snapshot is taken. The attitude
of the robot is depicted as red and green axes. PCBF-QP ensures the robot to stay away from any collision, regardless of the aggressiveness of
the input.
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Fig. 4. The values of PCBF h and parameter constraint ρ(·) in the
robot navigation example, plotted as a function of time. It can be seen
that PCBF-QP is capable of keeping the values nonnegative at all times.

on the x1-x2 plane and has radius Ri > 0. The robot is
modeled as a circle on the x1-x2 plane, having radius R > 0.

As the first step, we find that the dynamics (30) is contin-
uously symmetric under the Lie group action of SE(2). This
symmetry is very natural in that the dynamics of a ground
robot (30) can be written in the same form regardless of the
choice of coordinate. For a q ∈ SE(2), the Lie group action
q(x) is defined as accordingly translating and rotating the
pose-related elements (x1, x2, x4) with the velocity x3 being
unchanged. We also find that the robot is stabilizable to the
origin by utilizing the following handcrated control Lyapunov
function.

V (x) =
√
x21 + 4x22 + ϵ2 − ϵ+

1

2
x23 + 1− cosx4 (31)
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This V is a valid Lyapunov function for any ϵ > 0 because

u =
1√

x21 + 4x22 + ϵ2

[
−x1 cosx4 − 2x2 sinx4

0

]
∈ U (32)

is a feasible input that makes the V (x) value nonincreasing.
With the two observations given, we follow the steps delin-
eated in Section V to obtain a symmetry-induced PCBF

h(x, k) = b−V (q−1(x)), k = (b, q) ∈ K0 = [0,∞)×SE(2).
(33)

Notice that the x1-x2 projection of the b-level set of V (x),
i.e., C(k) with q being the identity element, is always an
ellipse with the two semiaxis diameters being 2

√
b2 + 2bϵ and√

b2 + 2bϵ and the major semiaxis pointing to the positive x1
direction. Utilizing this and Theorem 2, and following Section
V-C, we augment the parameter space using an N -dimensional
auxiliary variable η ∈ RN . This defines N hyperplanes (i.e.,
lines) on the x1-x2 space, resulting in polygonal D(η) ⊆ R2.
For each element of η, we employ a parameter constraint
which constraints each hyperplane to strictly pass between
each obstacle and the ellipse (buffered by the robot’s size R),
as shown in Fig. 3. This ensures C(k) and the obstacles do not
overlap, and thus C ⊆ A. We omit the details of the derivation
due to limited space and since it is a tedious series of basic
hand-doable calculations.

Simulation experiment was conducted using ϵ = 0.01,
R = 0.3 and N = 15 randomly placed obstacles of random
sizes. Note that handcrafting a single CBF that covers this
workspace is almost impossible. We used α(y, k) = 2y and
β(·)(y, k) = 2y for the class K functions. The reference input
uref is given through manual control by a human operator, who
is instructed to give aggressive inputs towards the obstacles,
so the overall closed-loop system should rely on the PCBF to
avoid any collision. Fig. 3 shows four snapshots taken from
the simulation. Regardless of the aggressiveness of the manual
reference input, the robot always stays within the set C(k)
which is placed collision-free due to the parameter constraints.
In Fig. 4, it can be seen that the values of PCBF h and
the parameter constraint functions ρ(·) are kept nonnegative
throughout the simulation.

VII. CONCLUSION

In this work, we introduced the concept of PCBF, a dif-
ferentiably parametrized spectrum of HOCBFs, along with
PCBF-QP, a QP-based feedback controller that uses a PCBF.
Multiple parameter constraints can be addressed using a PCBF,
allowing it to cover a relatively large and complex subset of
the workspace using simple building-block control invariant
sets. We also introduced some design techniques that can
be used for a class of systems to design a valid PCBF and
the parameter constraints for invariance guarantees within a
given safe region. Simulation experiments were conducted to
validate the proposed methodology.

While the proposed design technique was successful in the
shown simulation environments, systematic synthesis of these
certificates for general nonlinear systems remains an open
area requiring further investigation. In addition, fusing with
stochastic control methods to enable PCBFs to cover uncertain
or stochastic dynamics models is another possible future work.
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[11] J. J. Choi, F. Castañeda, C. Tomlin, and K. Sreenath, “Reinforcement
learning for safety-critical control under model uncertainty, using control
Lyapunov functions and control barrier functions,” in 2020 Robotics:
Science and Systems (RSS), 2020.

[12] A. Clark, “Control barrier functions for complete and incomplete in-
formation stochastic systems,” in 2019 American Control Conference
(ACC). IEEE, 2019, pp. 2928–2935.

[13] C. Santoyo, M. Dutreix, and S. Coogan, “A barrier function approach to
finite-time stochastic system verification and control,” Automatica, vol.
125, p. 109439, 2021.

[14] W. Xiao, C. Belta, and C. G. Cassandras, “Adaptive control barrier
functions,” IEEE Transactions on Automatic Control, vol. 67, no. 5,
pp. 2267–2281, 2021.

[15] L. Lindemann and D. V. Dimarogonas, “Control barrier functions for
signal temporal logic tasks,” IEEE control systems letters, vol. 3, no. 1,
pp. 96–101, 2018.

[16] W. Xiao and C. Belta, “High-order control barrier functions,” IEEE
Transactions on Automatic Control, vol. 67, no. 7, pp. 3655–3662, 2021.

[17] I. Jang and H. J. Kim, “Invariance guarantees using continuously
parametrized control barrier functions,” in 2023 The 23rd International
Conference on Control, Automation and Systems (ICCAS). ICROS,
2023, pp. 70–75. [Online]. Available: https://janginkyu.github.io/files/
iccas2023-paper.pdf

[18] H. K. Khalil, Nonlinear systems. Prentice Hall, 2002.
[19] F. Blanchini and S. Miani, Set-theoretic methods in control. Springer,

2008.
[20] Y.-C. Chang, N. Roohi, and S. Gao, “Neural lyapunov control,”

in Advances in Neural Information Processing Systems, H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett,
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